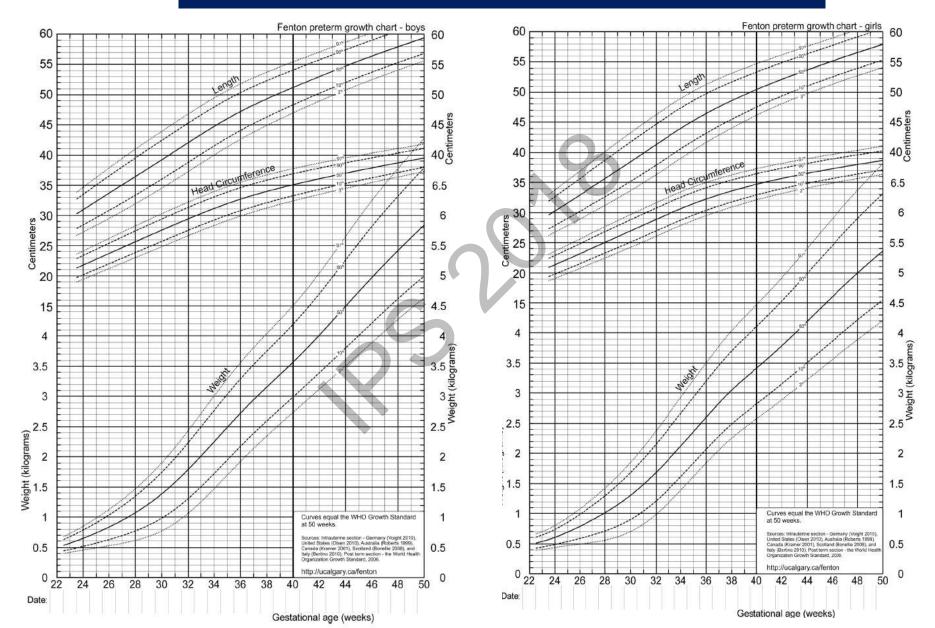
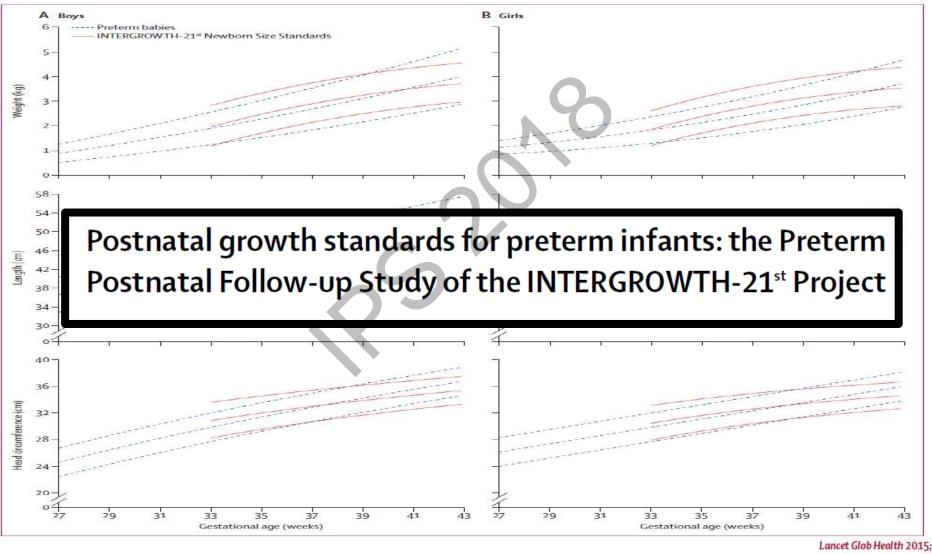
# Nutrition & Growth in Premature Infant

Professor Joseph HADDAD Pediatric Department Saint George Univ Hosp Balamand Univ Beirut Lebanon



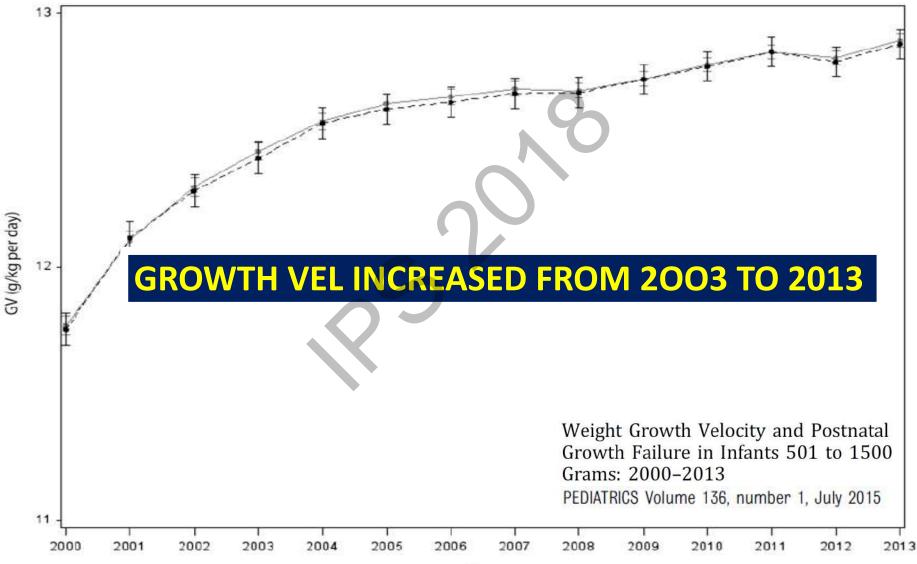


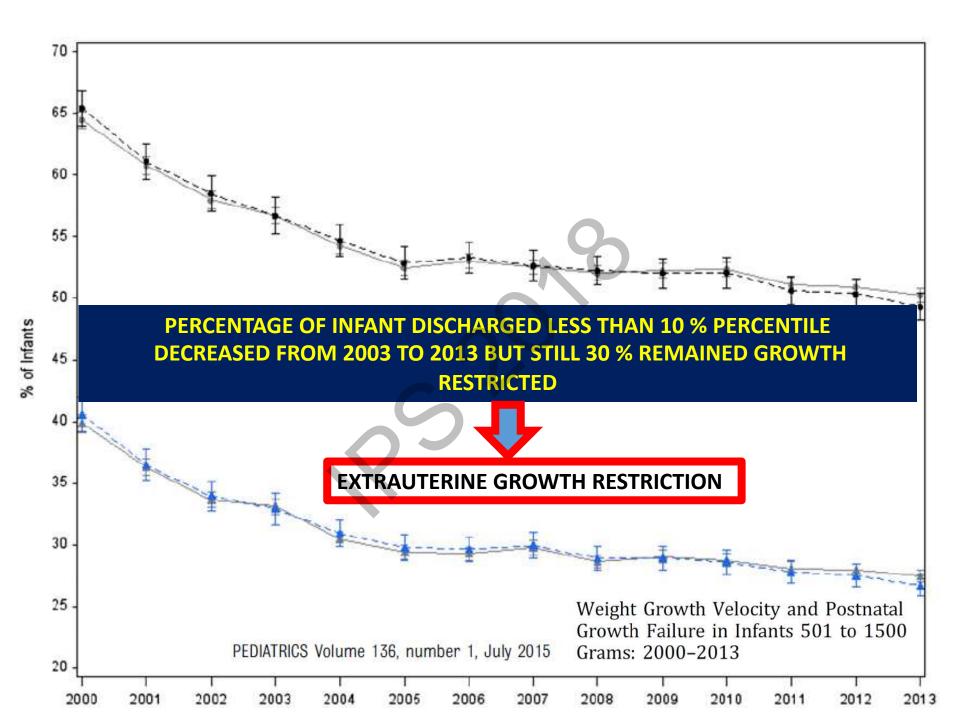

#### PART ONE : THE GROWTH OF THE PREMATURE INFANT ARE WE ON THE RIGHT TRACK ?



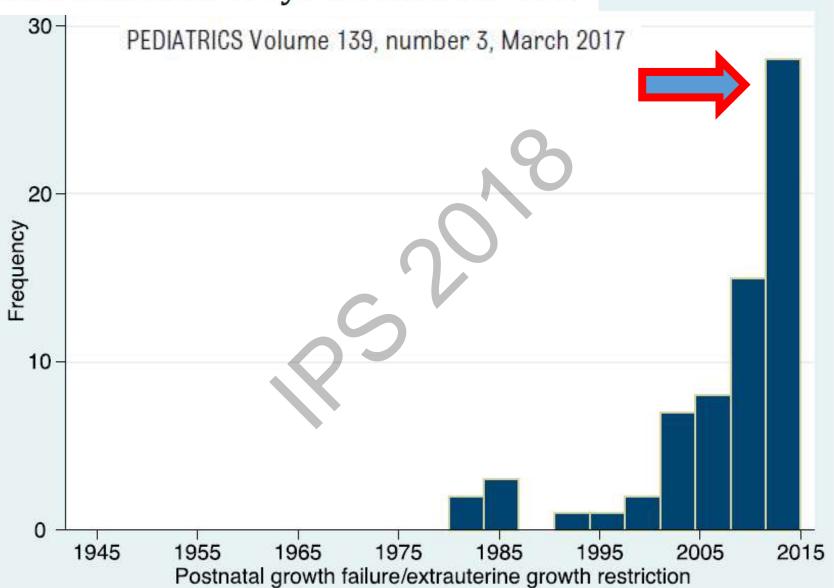

#### Fenton and Kim BMC Pediatrics 2013, 13:59

#### **REFERENCE CHART GROWTH FOR PREMATURE**

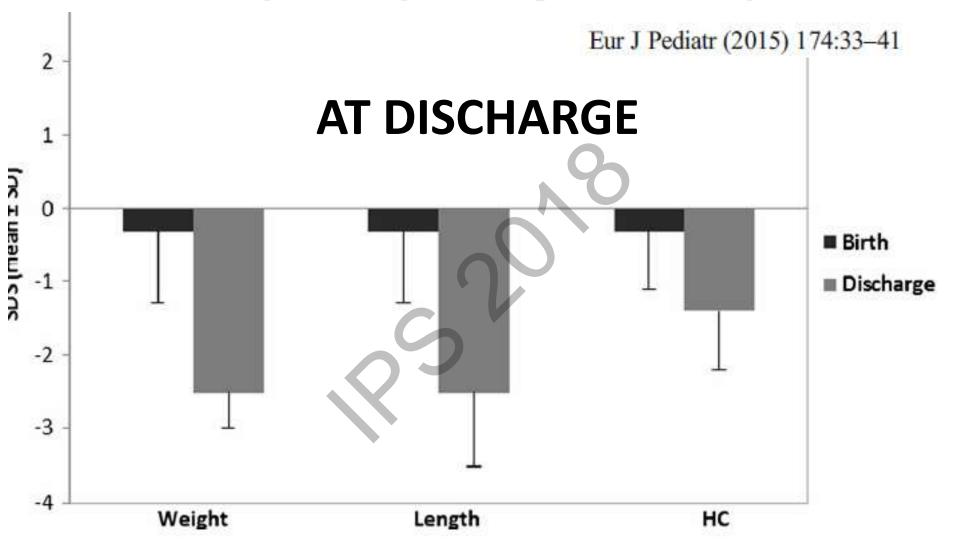




#### **REFERENCE CHART GROWTH FOR PREMATURE**

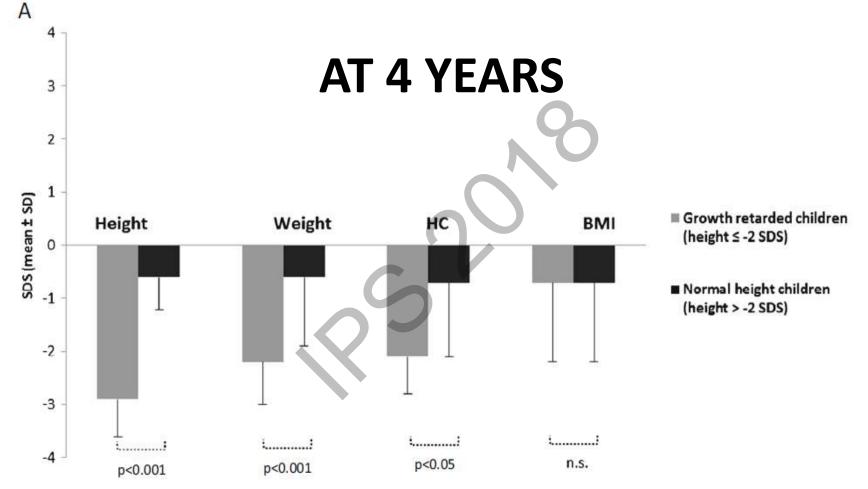



<sup>3:</sup> e681-91

# WHAT ABOUT PREMATURE IN NICU ?

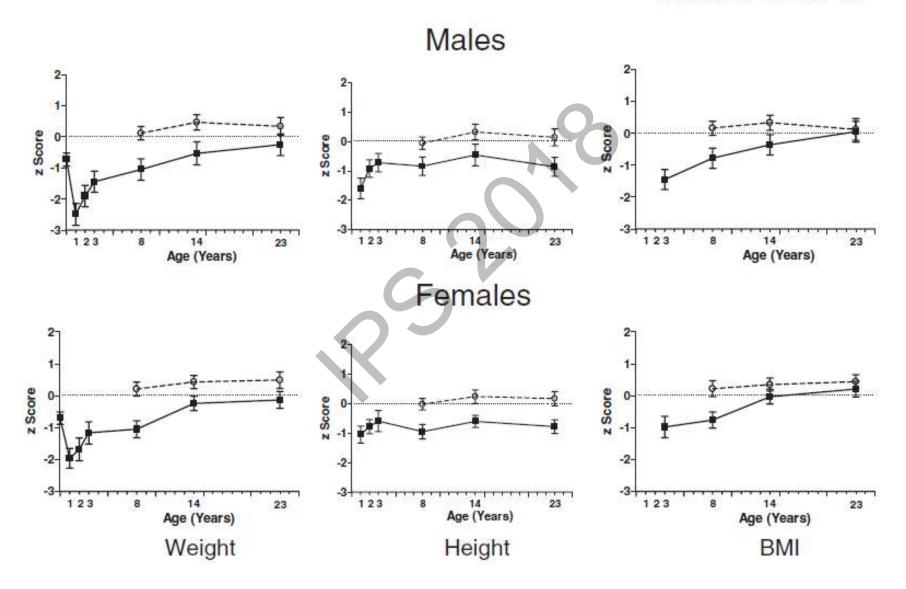






#### Preterm Infant Growth Velocity Calculations: A Systematic Review



Preterm infants with severe extrauterine growth retardation (EUGR) are at high risk of growth impairment during childhood

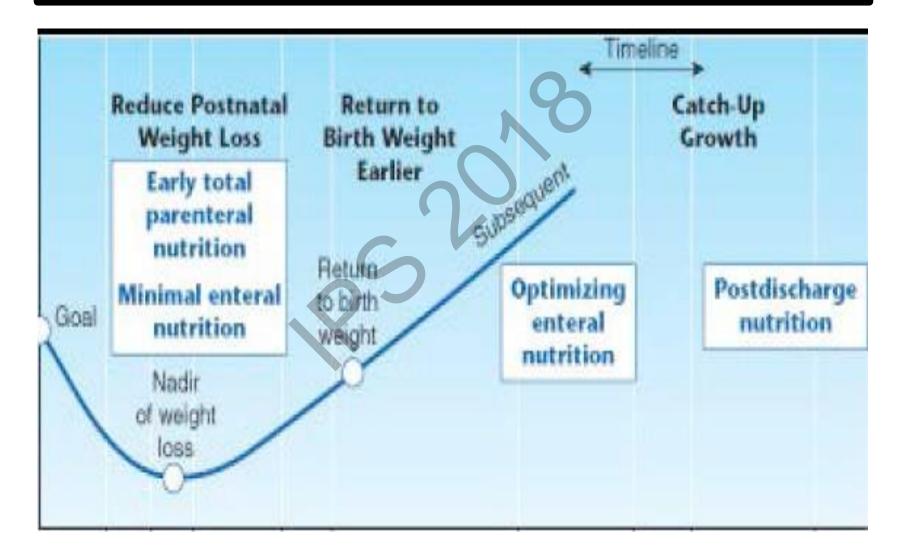


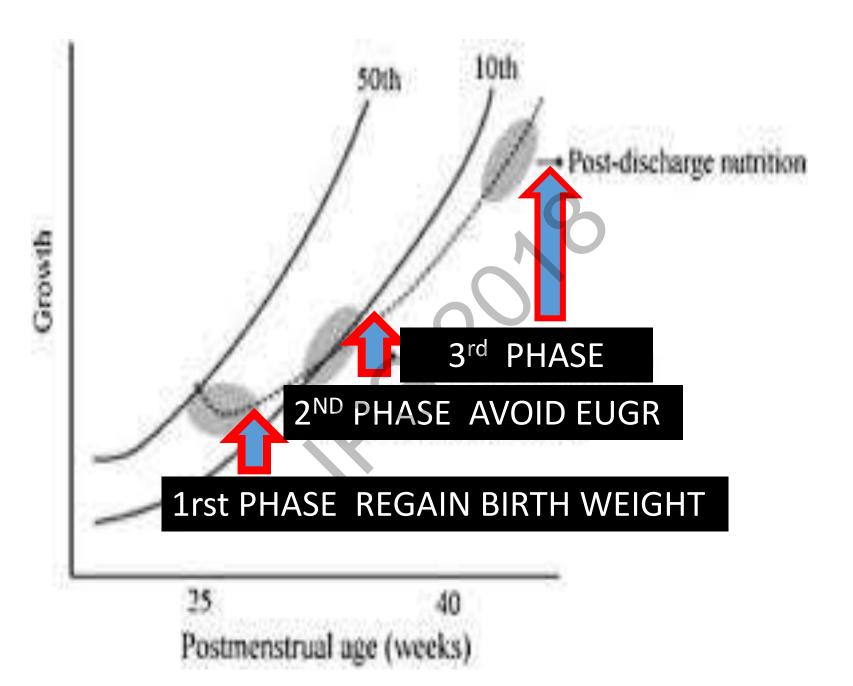

Preterm infants with severe extrauterine growth retardation (EUGR) are at high risk of growth impairment during childhood Eur J Pediatr (2015) 174:33–41



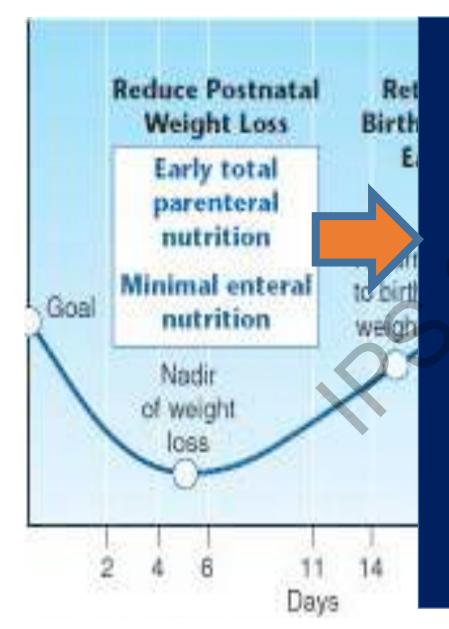
# AT 23 YEARS

SAIGAL ET AL. (Pediatr Res 60: 751-758,





# PREMATURITY + INTRAUTERINE GROWTH RESTRICTION + EXTRAUTERINE GROWTH RESTRICTION



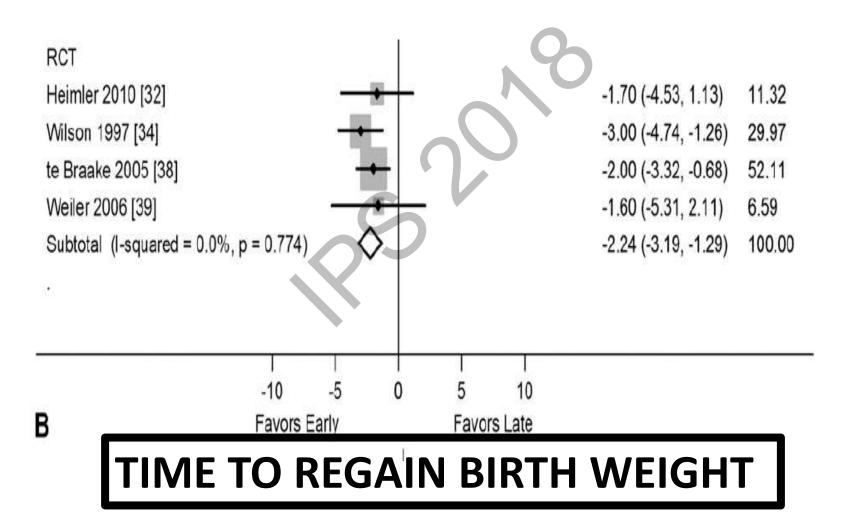

# GROWTH IMPAIRMENT + NEURODEVELOPMENTAL DELAY + METABOLIC SYNDROM

#### PART TWO : THE OPTIMAL NUTRITION FOR A PREMATURE INFANT TO AVOID EXTRA UTERINE RESTRICTION



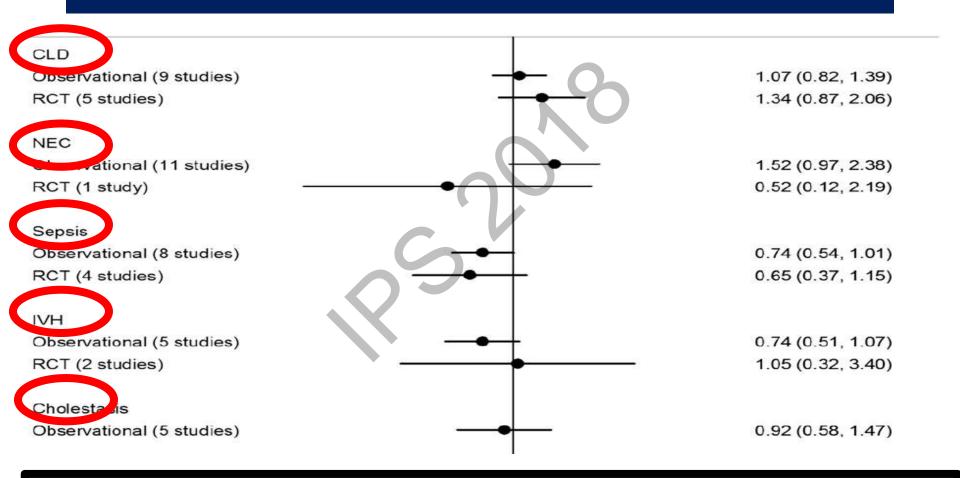


## **1rst PHASE REGAIN BIRTH WEIGHT**




\*DECREASE INSENSIBLE WATER LOSS \*DECREASE INSENSIBLE INTRACELLULAR FLUID LOSS \*EARLY POSITIVE NITROGEN BALANCE

\*EARLY PARENTERAL NUTRITION \*MINIMAL ENTERAL NUTRITION


#### Clin Nutr 2013;97:816-26.

# EARLY PARENTERAL NUTRITION



#### Clin Nutr 2013;97:816-26.

# EARLY PARENTERAL NUTRITION



## **NO INCREASES IN MORTALITY OR MORBIDITY**

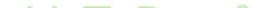
Table 1 Evidence-based early nutritional practice for VLBW infants: recommendations and evidence quality. Strength of Evidence Practice recommendation quality Prompt provision of energy: B Recommended Glucose infusion providing about 6 mg/kg/min Increase to about 10 mg/kg/d by 7 days of age Maintain blood sugar 50-120 mg/dL Prompt provision of parenteral amino acids: Recommended B Initiate 3.0 g/kg/d within hours of birth Advance to 4.0 g/kg/d by 0.5-1.0 g/kg/d steps Initiate lipid emulsion within the first 24 to 30 h of birth Recommended В Start 0.5-1.0 g/kg/d Advance to 3.0-3.5 g/kg/d by 0.5-1.0 g/kg/d steps Initiate trophic feedings by 5 days of age Recommended B Provide about 10 mL/kg/d (human milk if possible) Begin advancing to ~150 mL/kg/d by 10-20 mL/kg/d steps within the next several days

#### Suggested intakes of vitamins for premature infants receiving parenteral nutrition

| Vitamin                   | Current regimen<br>based upon pediatric<br>multivitamin<br>formulation*<br>(unit/kg/day) | Estimate based upon<br>the needs of<br>premature infants<br>(unit/kg/day) | Maximum not to<br>exceed term infant<br>(unit/day) |
|---------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|
| Fat-soluble vitam         | ins                                                                                      |                                                                           |                                                    |
| A (microg)¶               | 280                                                                                      | 500                                                                       | 700                                                |
| E (mg) <sup>∆</sup>       | 2.8                                                                                      | 2.8                                                                       | 7                                                  |
| K (microg)                | 80                                                                                       | 80                                                                        | 200                                                |
| D (microg)*               | 4                                                                                        | 4                                                                         | 10                                                 |
| Water-soluble vit         | amins                                                                                    |                                                                           |                                                    |
| C, Ascorbic<br>acid (mg)  | 32                                                                                       | 25                                                                        | 80                                                 |
| B1, Thiamin<br>(mg)       | 0.48                                                                                     | 0.35                                                                      | 1.2                                                |
| B2, Riboflavin<br>(mg)    | 0.56                                                                                     | 0.15                                                                      | 1.4                                                |
| B6,<br>Pyridoxine<br>(mg) | 0.4                                                                                      | 0.18                                                                      | 1                                                  |
| Niacin (mg)               | 6.8                                                                                      | 6.8                                                                       | 17                                                 |
| Pantothenate<br>(mg)      | 2                                                                                        | 2                                                                         | 5                                                  |
| Biotin<br>(microg)        | 8                                                                                        | 6                                                                         | 20                                                 |
| Folate<br>(microg)        | 56                                                                                       | 56                                                                        | 140                                                |
| Vitamin B12<br>(microg)   | 0.4                                                                                      | 0.3                                                                       | 1                                                  |

MINIMAL ENTERAL NUTRITION

Early trophic feeding versus enteral fasting for very preterm or very low birth weight infants (Review)




#### Comparison 1. Effects of trophic feeding versus enteral fasting

| Outcome or subgroup title                   | No. of<br>studies | No. of<br>participants | Statistical method                  | Effect size          |
|---------------------------------------------|-------------------|------------------------|-------------------------------------|----------------------|
| 1 Days to reach full enteral feeding        | 6                 | 556                    | Mean Difference (IV, Fixed, 95% CI) | -1.05 [-2.61, 0.51]  |
| 2 Incidence of necrotising<br>enterocolitis | 9                 | 748                    | Risk Ratio (M-H, Fixed, 95% CI)     | 1.07 [0.67, 1.70]    |
| 3 Mortality                                 | 8                 | 558                    | Risk Ratio (M-H, Fixed, 95% CI)     | 0.66 [0.41, 1.07]    |
| 4 Days to regain birth weight               | 5                 | 518                    | Mean Difference (IV, Fixed, 95% CI) | -0.01 [-0.96, 0.95]  |
| 5 Incidence of invasive infection           | 3                 | 237                    | Risk Ratio (M-H, Fixed, 95% CI)     | 1.06 [0.72, 1.56]    |
| 6 Duration of phototherapy (days)           | 3                 | 170                    | Mean Difference (IV, Fixed, 95% CI) | 0.35 [-0.29, 0.99]   |
| 7 Days of hospital stay                     | 4                 | 341                    | Mean Difference (IV, Fixed, 95% CI) | -3.85 [-11.54, 3.84] |

# Advantages of gastrointestinal priming (trophic feeding) in preterm infants

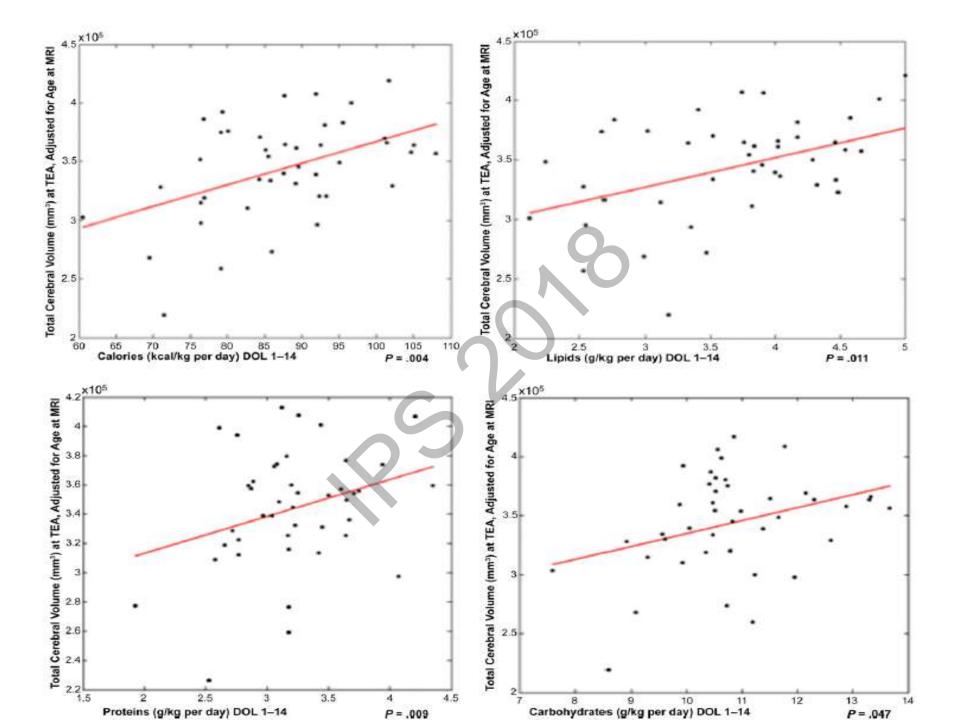
| Shortens time to regain birth weight           |
|------------------------------------------------|
| Improves feeding tolerance                     |
| Reduces duration of parenteral nutrition       |
| Enhances enzyme maturation                     |
| Reduces intestinal permeability                |
| Improves gastrointestinal motility             |
| Matures hormone responses                      |
| Improves mineral absorption and mineralization |
| Reduces duration of phototherapy               |
| Lowers incidence of cholestasis                |



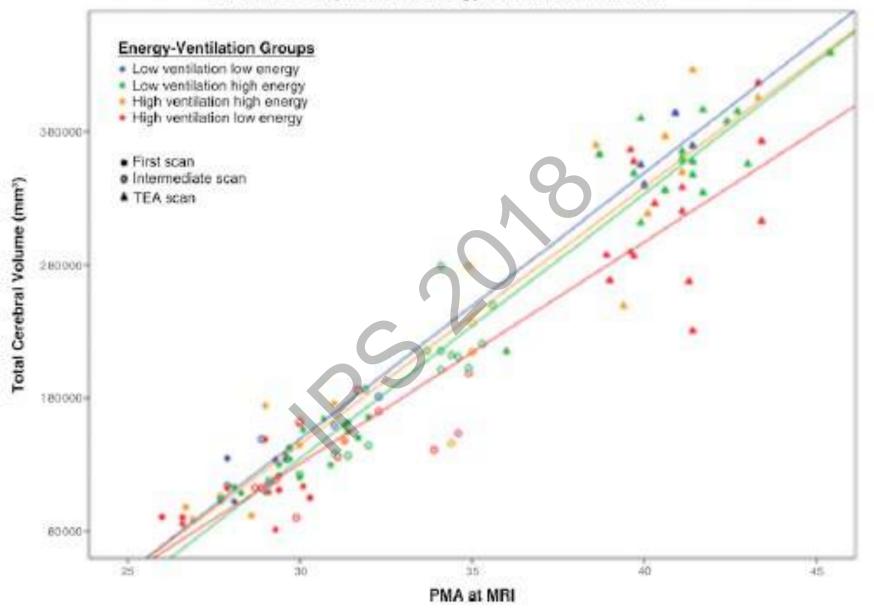
#### . . . . .

|                                                                                             | Birthwe                     | ight ≤1000<br>g                                                            |                             | ght 1001 to<br>500 g                                                       |                            | ght 1501 to<br>300 g                                                       |
|---------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------|
|                                                                                             | Ideal :                     | schedule*                                                                  | Ideal :                     | s <mark>c</mark> hedule*                                                   | Ideal :                    | schedule*                                                                  |
| Oropharyngeal<br>colostrum¶                                                                 | DOL 0 to<br>9               | Swab on<br>buccal<br>mucosa<br>every 3<br>hours                            | DOL 0 to<br>6               | Swab on<br>buccal<br>mucosa<br>every 3<br>hours                            | DOL 0 to<br>4              | Swab on<br>buccal<br>mucosa<br>every 3<br>hours                            |
| Trophic feeds<br>(20 cal/oz) <sup>∆</sup>                                                   | DOL 1 to<br>3               | 15<br>mL/kg/day<br>for 3 days                                              | DOL 1 to<br>2               | 20<br>mL/kg/day<br>for 1 to 2<br>days                                      | DOL 1                      | 25<br>mL/kg/day<br>for 1 day                                               |
| Feeding<br>advancement<br>(mL/kg added<br>each day)                                         | DOL 4 to<br>9               | Start<br>increasing<br>DOL 4; add<br>15 mL/kg<br>each day                  | DOL 3 to<br>6               | Start<br>Increasing<br>DOL 3; add<br>20 mL/kg<br>each day                  | DOL 2 to<br>4              | Start<br>increasing<br>DOL 2; add<br>25<br>mL/kg/day<br>each day           |
| Start fortified<br>feeds<br>(24 cal/oz)*                                                    | DOL 10                      | Start<br>fortifying day<br>after feed<br>volume<br>reaches 80<br>mL/kg/day | DOL 7                       | Start<br>fortifying day<br>after feed<br>volume<br>reaches 80<br>mL/kg/day | DOL 5                      | Start<br>fortifying dar<br>after feed<br>volume<br>reaches 80<br>mL/kg/day |
| Further<br>feeding<br>advancement<br>(start<br>increasing day<br>after fortifying<br>feeds) | DOL 11 to<br>15             | Next day,<br>start adding<br>15 mL/kg<br>each day                          | DOL 8 to<br>11              | Next day,<br>start adding<br>20 mL/kg<br>each day                          | DOL 6 to<br>9              | Next day,<br>start adding<br>25 mL/kg<br>each day                          |
| Target feeding<br>volume                                                                    | DOL 15<br>and<br>thereafter | 160<br>mL/kg/day                                                           | DOL 11<br>and<br>thereafter | 160<br>mL/kg/day                                                           | DOL 9<br>and<br>thereafter | 160<br>mL/kg/day                                                           |

#### **TAKE HOME MESSAGE TWO**


# TO REGAIN BIRTH WEIGHT AS SOON AS POSSIBLE WITHIN 10 TO MAX 15 DAYS




\*EARLY PARENTERAL NUTRITION \*MINIMAL ENTERAL NUTRITION

# Nutrient Intake in the First Two Weeks of Life and Brain Growth in Preterm Neonates

| Nutritional intake per d (DOL 1-14), med                  | lian (IOR)       |                   |       |
|-----------------------------------------------------------|------------------|-------------------|-------|
| Energy total (kcal/kg per d)                              | 77.6 (74.5-83.4) | 93.1 (89.5-101.3) |       |
| Parenteral                                                | 45.8 (28.4-62.3) | 41.3 (35.9-56.3)  | .847  |
| Enteral                                                   | 31.7 (15.2-45.2) | 52.9 (39.1-60.1)  | .001  |
| Lipids total (g/kg per d)                                 | 3.0 (2.6-3.5)    | 4.2 (3.8-4.5)     | -     |
| Parenteral                                                | 1.0 (0.8-1.8)    | 1.3 (1.0-1.8)     | .405  |
| Enteral                                                   | 1.8 (0.9-2.7)    | 3.0 (2.2-3.3)     | .001  |
| Carbohydrates total (g/kg per d)                          | 9.9 (9.1-10.5)   | 11.1 (10.3-12.1)  |       |
| Parenteral                                                | 6.7 (4.8-8.7)    | 6.4 (4.4-7.9)     | .448  |
| Enteral                                                   | 3.1 (1.4-4.2)    | 5.0 (3.6-6.1)     | <.001 |
| Proteins total (g/kg per d)                               | 2.8 (2.6-3.1)    | 3.2 (2.9-3.5)     |       |
| Amino acids, parenteral                                   | 2.0 (1.4-2.7)    | 1.8 (1.5-2.4)     | .502  |
| Proteins, enteral                                         | 0.8 (0.3-1.0)    | 1.3 (0.9-1.6)     | <.001 |
| Percentage human milk to total<br>enteral intake, % (IQR) | 99 (97-100)      | 95 (77–98)        | .015  |



#### Cerebral Development and Energy-Ventilation Interaction



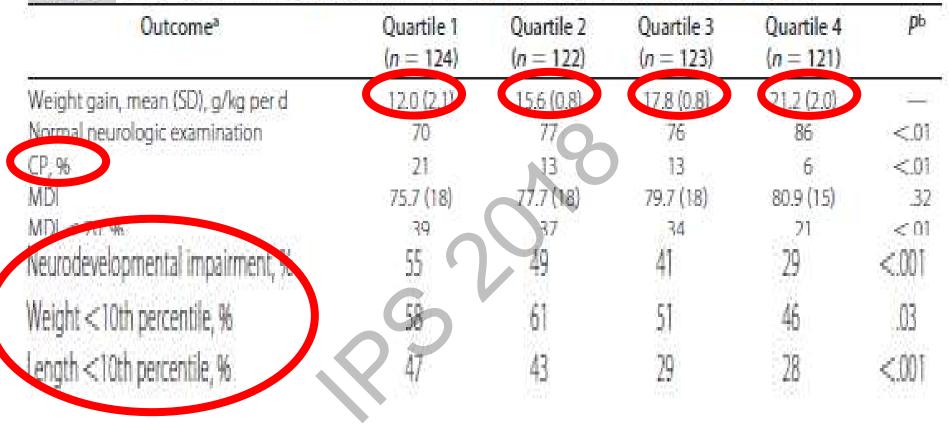
## Nutrient Intake in the First Two Weeks of Life and Brain Growth in Preterm Neonates

**CONCLUSIONS:** In preterm neonates, greater energy and enteral feeding during the first 2 weeks of life predicted more robust brain growth and accelerated WM maturation. The long-lasting effect of early nutrition on neurodevelopment may be mediated by enhanced brain growth. Optimizing nutrition in preterm neonates may represent a potential avenue to mitigate the adverse brain health consequences of critical illness.

### TAKE HOME MESSAGE TWO BIS

# TO ENSURE A BETTER BRAIN GROWTH DURING THE FIRST 15 DAYS

# \*EARLY PARENTERAL NUTRITION \*MINIMAL ENTERAL NUTRITION \*HIGH ENERGY INTAKE \*BREAST MILK


# 2<sup>ND</sup> PHASE OPTIMIZING ENTERAL NUTRITION



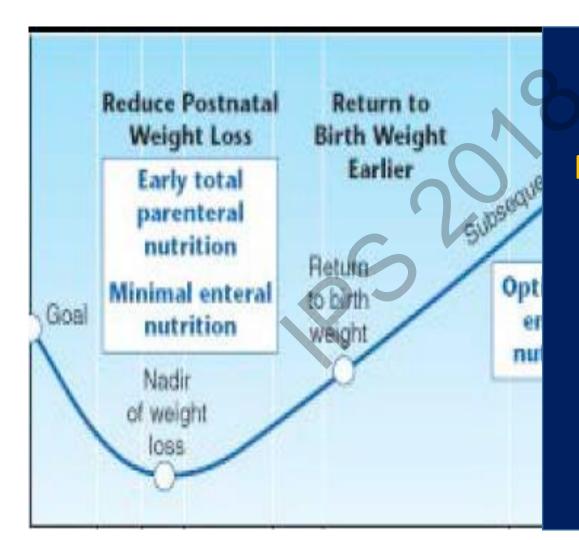
MEET ENERGY REQUIREMENT FOR GROWTH TO AVOID Extra Uterine Growth Retardation

#### GAIN WEIGHT > 20 G/DAY IS THE BEST FOR A BETTER DEV

Outcomes at 18 to 22 Months' Corrected Age According to Weight Gain Quartile

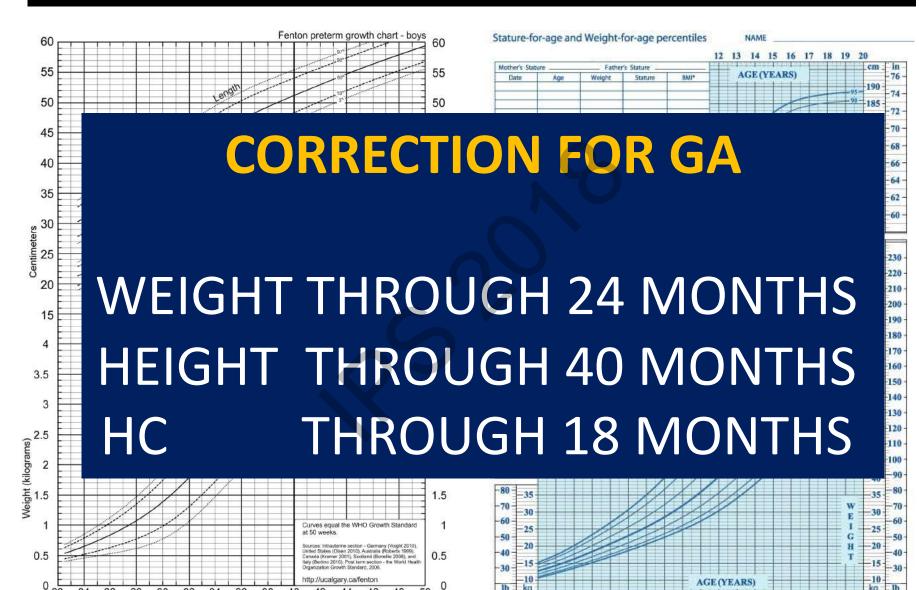


Growth in the Neonatal Intensive Care Unit Influences Neurodevelopmental and Growth Outcomes of Extremely Low Birth Weight Infants


#### Estimated daily energy requirements for growing premature infants

| Factor                        | Kcal/kg | Comment                  |  |
|-------------------------------|---------|--------------------------|--|
| Resting energy<br>expenditure | 50      | Resting metabolic rate   |  |
| Activity                      | 15      | 30 percent above resting |  |
| Cold stress                   | 10      | Thermoregulation         |  |
| Synthetic effect of feeding   | 8       | Dietary thermogenesis    |  |
| Fecal loss                    | 12      | 10 percent of intake     |  |
| Growth                        | 25      | Calories stored          |  |
| Total caloric requirement     | 120     |                          |  |

UploDa


Adapted from: Sinclair JC. Clin Obstet Gynecol 1971; 14:840.

## **3<sup>RD</sup> PHASE THE CATCH UP GROWTH**



POST DISCHARGE NUTRITION TO ENSURE A THOUROUGH FOLLOW UP ON GROWTH

## **FOLLOW UP ON GROWTH**



Date

 Gestational age (weeks)



kg Ib

#### Nutritional assessment of the VLBW infant

| Assessment                   | Frequency                                                                                                              |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Fluid intake                 |                                                                                                                        |  |
| Parenteral                   | Daily                                                                                                                  |  |
| Enteral                      | Daily                                                                                                                  |  |
| Nutrient intake              |                                                                                                                        |  |
| Energy                       | Daily                                                                                                                  |  |
| Protein                      | Daily                                                                                                                  |  |
| Specific nutrient            | Daily                                                                                                                  |  |
| Anthropomorphic me           | asurements                                                                                                             |  |
| Body weight                  | Daily at same time                                                                                                     |  |
| Length                       | Weekly                                                                                                                 |  |
| Head<br>circumference        | Weekly                                                                                                                 |  |
| aboratory values             |                                                                                                                        |  |
| Hemoglobin,<br>hematocrit    | After full feeds are achieved, measure every 2 to 3 weeks until it is clear that the results are stable.               |  |
| Calcium,<br>phosphorus       | As above                                                                                                               |  |
| Alkaline<br>phosphatase      | As above                                                                                                               |  |
| Blood urea<br>nitrogen (BUN) | As above. If values are abnormal, also measure prealbumin                                                              |  |
| Serum electrolytes           | In selected infants (receiving diuretics, or feeds of<br>unfortified human milk, or limited intake, or slow<br>growth) |  |

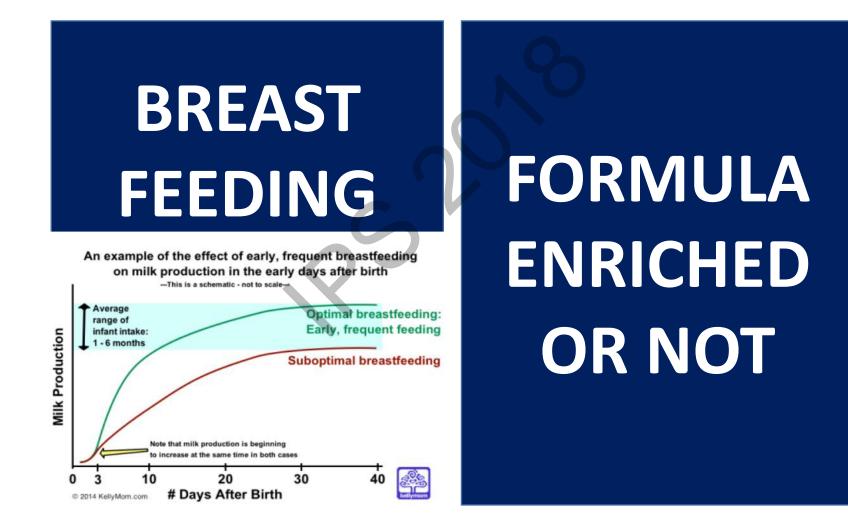
VLBW: very low birthweight (birthweight ≤1500 g).

Adapted from: Schanler RJ. The low birth weight infant: Perinatal nutrition. In: Nutrition in Pediatrics: Basic Science and Clinical Applications, Walker WA, Watkins JB (Eds), B.C. Decker Inc., Hamilton, Ontario, Canada 1996. p.387.

Date®

#### Clinical criteria of feeding intolerance in preterm infants

| Abdominal examination                                                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Distension                                                                                                                                             |  |  |
| Tenderness                                                                                                                                             |  |  |
| Change in bowel sounds (eg, increased or absent)                                                                                                       |  |  |
| Emesis                                                                                                                                                 |  |  |
| Gastric residual volume                                                                                                                                |  |  |
| Greater than 2 mL/kg of body weight                                                                                                                    |  |  |
| Greater than half the volume of feeds over prior three hours                                                                                           |  |  |
| Any change in quantity of fluid volume (usually increase)                                                                                              |  |  |
| Gastric residual fluid characteristics                                                                                                                 |  |  |
| Change in color                                                                                                                                        |  |  |
| Green: Bile                                                                                                                                            |  |  |
| Red or brown: Blood                                                                                                                                    |  |  |
| Stools                                                                                                                                                 |  |  |
| Any change in frequency                                                                                                                                |  |  |
| Presence of blood or guaiac positive stools                                                                                                            |  |  |
| Clinical status                                                                                                                                        |  |  |
| Any change in clinical status, eg, increased episodes of apnea<br>and bradycardia, diminished oxygen saturation (desaturation<br>events), and lethargy |  |  |




#### Laboratory monitoring of infants receiving parenteral nutrition (PN)

| Laboratory test                                                                                                                                                                            | Frequency                                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| Blood                                                                                                                                                                                      |                                                                                         |  |
| Electrolytes: sodium, potassium,<br>chloride, bicarbonate                                                                                                                                  | Daily until stable, then serially as indicated                                          |  |
| Glucose                                                                                                                                                                                    | Daily until stable, then serially as<br>indicated                                       |  |
| Blood urea nitrogen (BUN),<br>creatinine, calcium, phosphorus,<br>magnesium, alkaline<br>phosphatase, bilirubin, alanine<br>aminotransferase<br>(ALT), aspartate<br>aminotransferase (AST) | After the first week and then serially<br>on an alternate week schedule as<br>indicated |  |



# PART 3 : ENTERAL NUTRITION OF THE PRETERM WHAT IS THE BEST ?



### BREAST MILK IS THE BEST FOR NUTRITION OF PREMATURE INFANT

### IMMUNITY

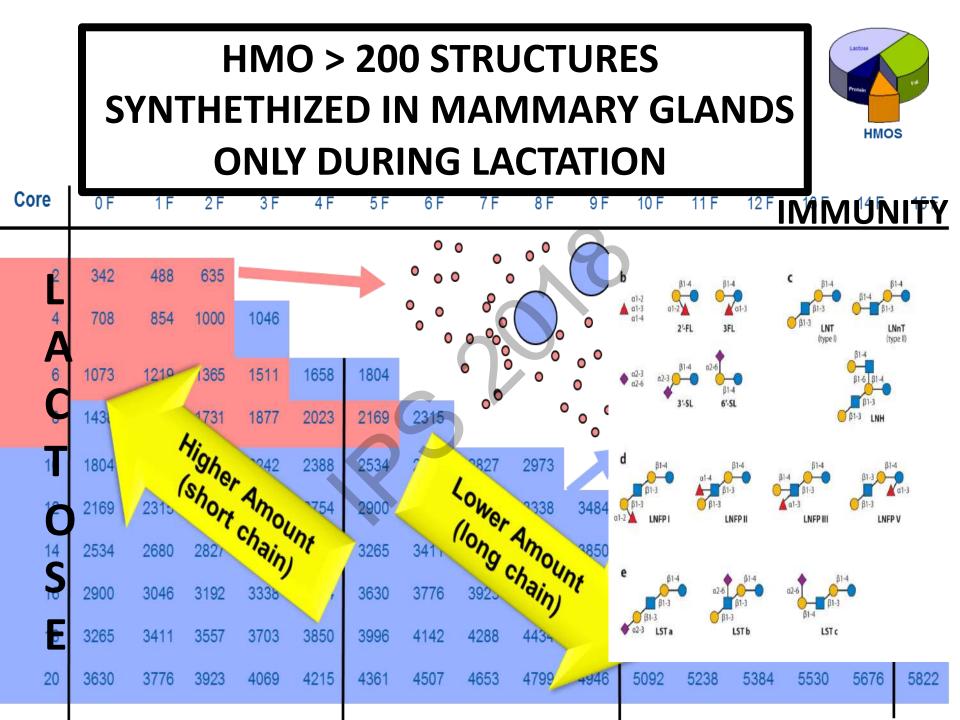
## COGNITION

### BREAST MILK IS THE BEST FOR NUTRITION OF PREMATURE INFANT

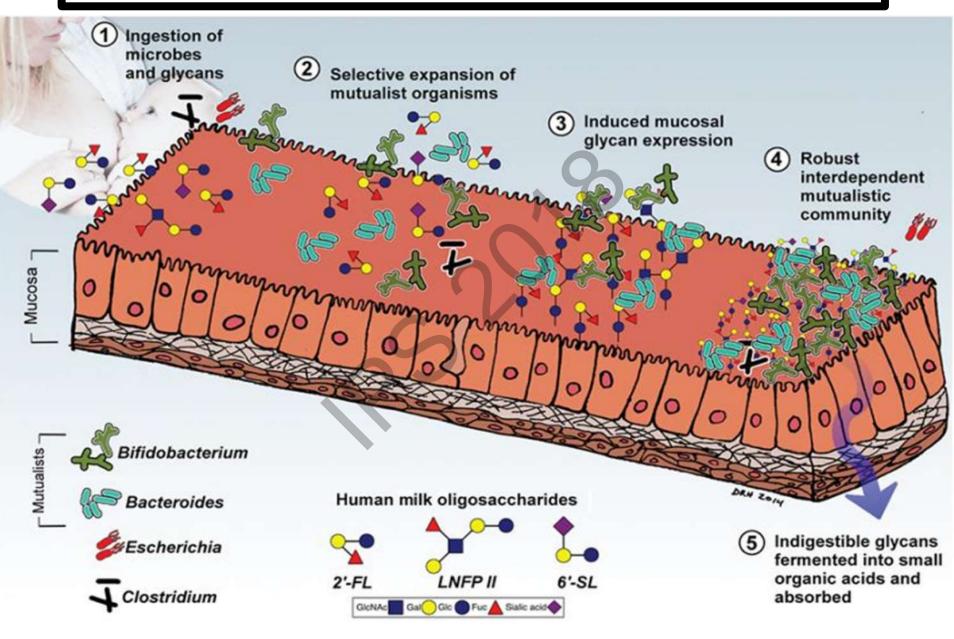


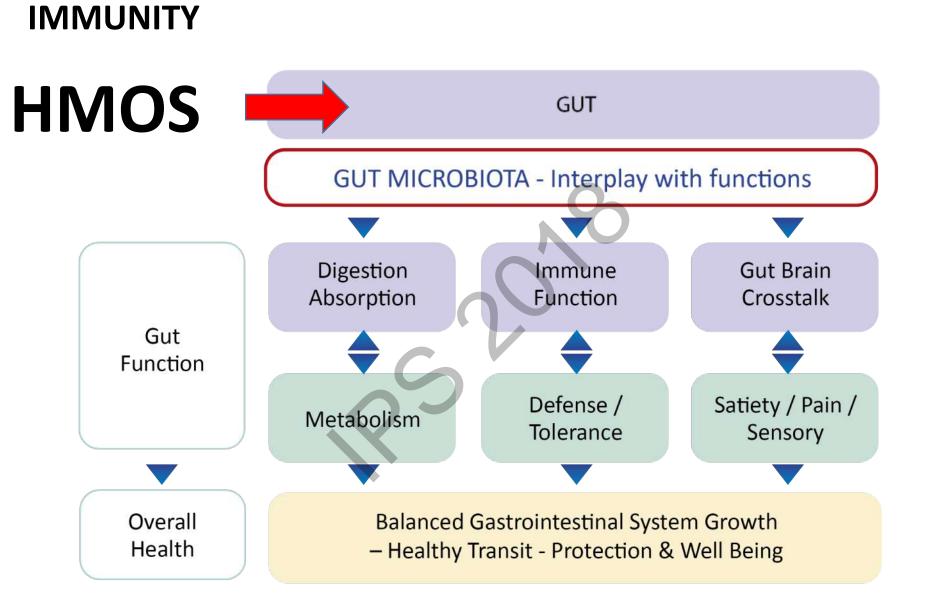
### **BREAST MILK IS A MUST**

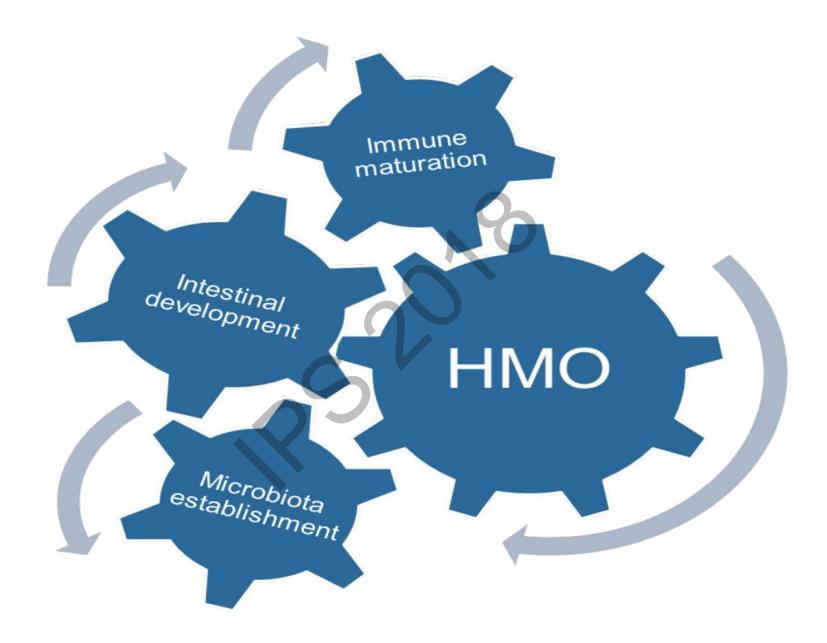
### IMMUNITY


#### Suggested benefits of human-milk feeding for preterm infants

- Dose-related decreases in NICU length of stay and lower morbidity including risk of the following:
  - o Sepsis
  - Necrotizing enterocolitis
  - Urinary tract infection
- Benefits persist beyond NICU stay
- Improved gastrointestinal function and integrity via the following:
  - Decreased gastric pH
  - Increased gastrointestinal motility
  - Accelerated mucosal immunity
  - Improved gut microflora
  - Decreased mucosal permeability leading to reduced bacterial translocation
- Improvement in indexes of neurodevelopment that persists into adolescence


### nan milk proteins


| IMMUNITY | , |
|----------|---|
|----------|---|


|    | Bioactivity                                                                 |
|----|-----------------------------------------------------------------------------|
|    | Bacteriostatic; bactericidal; immunomodulatory; cell prolif differentiation |
|    | Prebiotic; antimicrobial; immunostimulatory; enhanced Fe<br>absorption      |
|    | Transfer of maternal immunity; antibodies against bacteria                  |
|    | Antibacterial activity; degradation of bacterial cell wall gl               |
|    | Hydrolysis of triglycerides; fat absorption                                 |
|    | Immunomodulatory activity; brain function; intestinal dev                   |
|    | Vitamin B12 absorption; antimicrobial activity                              |
|    | Limit/slow down protein digestion                                           |
|    | Opioid activity; enhancing calcium absorption                               |
|    | Antibacterial activity by acting as structural analogues                    |
| 26 | Antibactorial and antiviral activities                                      |



#### Human Milk OligoSaccharides = Natural PREBIOTIC







### BREAST MILK IS THE BEST FOR NUTRITION OF PREMATURE INFANT

## COGNITION



| Author                                     | Population                | <b>Birth Years</b> | Age                      | Test                             |                   |                                                  |                                      | Outcome                                                                     | )                                                |                      |                                 |
|--------------------------------------------|---------------------------|--------------------|--------------------------|----------------------------------|-------------------|--------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------|----------------------|---------------------------------|
| Feldman &<br>Eidelman, <sup>22</sup> 2003  | 86 infants<br><1750 g     | 1996-1999          | At discharge<br>and 6 mo | Bayley II                        | 6m<br>MDI<br>PDI  | HM                                               | Substantial<br>94.2 ± 9<br>85.8 ± 11 | $\begin{array}{l} \text{Intermediate} \\ 91.7\pm7 \\ 78.6\pm13 \end{array}$ | Minimal<br>90.5 ± 8<br>78.0 ± 1.                 |                      | Р<br><.05<br><.01               |
| Blaymore Bier<br>et al, <sup>25</sup> 2002 | 39 infants<br><2000 g     | 1996-1999          | 7 and 12 mo              | Bayley II                        | 12m<br>MDI        | HM<br>100 ± 12                                   | Formula<br>91 ± 10                   |                                                                             |                                                  |                      | P<br><.05                       |
| Pinelli et al, <sup>26</sup> 2003          | 148 infants<br><1500 g    | 2008-2009          | 6 and 12 mo              | Bayley II                        | 12m<br>MDI<br>PDI | HM                                               | >80%<br>98 ± 15<br>78 ± 15           |                                                                             | <80%<br>91 ± 12<br>77 ± 14                       |                      | P<br>NS<br>NS                   |
| O'Connor et al, <sup>27</sup><br>2003      | 463 infants<br>750–1800 g | 1996-1998          | 12 mo                    | Bayley II                        | MDI<br>PDI        | PHM-T<br>93.1 ± 15<br>86.8 ± 15                  | ≥50% HM-1<br>95 ± 13<br>84.6 ± 15    | ſ                                                                           | <50% HI<br>91.6 ± 1<br>86.5 ± 1                  | 1                    | PFF-T<br>92.9 ± 13<br>88.1 ± 15 |
| Vohr et al, <sup>28</sup> 2006             | 1035 infants<br><1000 g   | 1999-2001          | 18-22 mo                 | Pentiles of HM vol.<br>Bayley II |                   | ≤20th                                            | 20-40th                              | 40-60th                                                                     | 60-80th                                          | >80th                | Adjust. P                       |
|                                            | elfered0                  |                    |                          |                                  | MDI<br>PDI<br>BRS | 74.2<br>80.2<br>44.8                             | 76.9<br>82.7<br>52.1                 | 78.3<br>84.2<br>50.1                                                        | 90.4<br>84.4<br>51.8                             | 97.3<br>89.4<br>58.8 | .004<br>.003<br>.028            |
| Furman et al, <sup>5</sup> 2004            | 98 infants<br><1500 g     | 1997–1999          | 20 mo                    | HM mL/kg/d<br>Bayley II          |                   | None                                             | 124 mL                               | 25–29 mL                                                                    | ≥50 mL                                           |                      | Adjusted P                      |
|                                            |                           |                    |                          |                                  | MDI<br>PDI        | $\begin{array}{c} 80\pm16\\ 80\pm16 \end{array}$ | 70 ± 14<br>75 ± 19                   | 75 ± 14<br>71 ± 17                                                          | $\begin{array}{c} 85\pm21\\ 76\pm16 \end{array}$ |                      | NS<br>NS                        |

Abbreviations: BRS, Behavior Rating Scale; MDI, Bayley Mental Development Index; NS, not significant; PDI, Psychomotor Development Index; PFF, predominantly formula fed; PHM-T, predominantly HM until term.

| Author                                 | Population                                                                 | Birth Years                  | Age        | Test                                                                                                                           |                                                                                                                                                | Outcor                                                                                                                                                                                                  | ne                                                               |
|----------------------------------------|----------------------------------------------------------------------------|------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Vohr et al, <sup>29</sup><br>2007      | 773 infants<br>NICHD<br>401–1000 g                                         | Oct 1999–Jun<br>2001         | 30 m CA    | Bayley II<br>MDI<br>PDI<br>Total behavioral<br>score                                                                           | Parameter estimate<br>0.59 pts per 10 mL <sup>a</sup><br>0.56 pts per 10 mL <sup>a</sup><br>0.99% per 10 mL <sup>a</sup>                       | Standard error<br>0.17<br>0.21<br>0.33                                                                                                                                                                  | Adjusted <i>P</i> value<br>.0005<br>.0092<br>.0028               |
| Rozé et al, <sup>30</sup><br>2012      | 2925 infants<br>LIFT (<33 wk)<br>France<br>EPIPAGE<br>(22–32 wk)<br>France | Jan 2003–Jun<br>2008<br>1997 | 2 y<br>5 y | Ages and Stages<br>Questionnaire<br>KABC                                                                                       | Association between<br>neurodevelopment<br>LIFT<br>EPIPAGE                                                                                     |                                                                                                                                                                                                         | ne of discharge and nonoptimal<br><i>P</i> value<br>.001<br>.001 |
| Beaino<br>et al, <sup>33</sup><br>2011 | 1503 infants<br>EPIPAGE<br>(22–32 wk)<br>France                            | 1997                         | 5 y        | KABC MPC<br>Mild cognitive<br>deficiency <sup>5</sup><br>Severe cognitive<br>deficiency <sup>9</sup>                           | Breast milk<br>% OR (95% CI)<br>15% 0.54 (0.39–0.76)<br>4% 0.25 (0.14–0.44)                                                                    | No breast milk<br>% OR<br>23% 1.00 <sup>c</sup><br>13% 1.00 <sup>c</sup>                                                                                                                                |                                                                  |
| Tanaka<br>et al, <sup>34</sup><br>2009 | 38 infants<br>VLBW Japan                                                   | 1999–2000                    | 5 y        | KABC<br>MPC<br>Simultaneous<br>processing<br>Sequential<br>processing<br>Day-Night Test<br>KRISP<br>Motor Planning Test<br>SDQ | Breast milk<br>$100.9 \pm 14.6$<br>$99.3 \pm 13.8$<br>$106.7 \pm 14.5$<br>$14.1 \pm 1.4$<br>$17.2 \pm 0.8$<br>$18.8 \pm 5.3$<br>$11.0 \pm 1.2$ | Formula<br>94.5 $\pm$ 11.8<br>94.6 $\pm$ 15.9<br>94.7 $\pm$ 11.6 <sup>c</sup><br>11.1 $\pm$ 0.9 <sup>c</sup><br>15.0 $\pm$ 1.4 <sup>d</sup><br>12.0 $\pm$ 3.9 <sup>c</sup><br>13 $\pm$ 3.9 <sup>c</sup> |                                                                  |

|                          | Group #1<br>(breastfed) | Group #2<br>(formula-fed) | p-Value                              |
|--------------------------|-------------------------|---------------------------|--------------------------------------|
| Participants (n)         | 21                      | 12                        |                                      |
| Age (days)               | $1287 \pm 153$          | $1281 \pm 118$            | 0.91                                 |
| Fine motor               | $36.8 \pm 5.3$          | $34.3 \pm 4.8$            | 0.19                                 |
| Receptive language       | $41.1 \pm 3.3$          | $34.5 \pm 5.6$            | 0.0019                               |
| Expressive language      | $39.1 \pm 3.9$          | $37 \pm 5.8$              | 0.28                                 |
| Visual reception         | $44.4 \pm 4.6$          | $41.6 \pm 4.5$            | 0.09                                 |
| reastfeeding Vs. Formula | ₽<br>T                  | I                         | breast > formula<br>breast < formula |
| R                        |                         |                           | 0.001<br>P Value<br>(Corrected       |
|                          | (52) (4)                |                           | 0.05                                 |

|                     | Group #1<br>(breastfed) | Group #3<br>(breast + formula-fed) | p-Value                                |
|---------------------|-------------------------|------------------------------------|----------------------------------------|
| Participants (n)    | 21                      | 15                                 |                                        |
| Age (days)          | $1287 \pm 153$          | $1219 \pm 150$                     | 0.19                                   |
| Fine motor          | $36.8 \pm 5.3$          | $32.9 \pm 6.4$                     | 0.067                                  |
| Receptive language  | $41.1 \pm 3.3$          | $34.7 \pm 5.8$                     | 0.0011                                 |
| Expressive language | $39.1 \pm 3.9$          | $35.2 \pm 6.4$                     | 0.05                                   |
| Visual reception    | $44.4 \pm 4.6$          | $38.8 \pm 6.1$                     | 0.0056                                 |
|                     |                         |                                    |                                        |
|                     |                         |                                    | st > formula+brea<br>st < formula+brea |
| R                   | R                       |                                    | 0.001<br>P Value<br>(Correcte          |
|                     |                         |                                    |                                        |

#### Subset comparison of older members of Group #1 and Group #3

| Subset comparison o | f older men | nbers of Group | #2 and Group #3 |
|---------------------|-------------|----------------|-----------------|
|---------------------|-------------|----------------|-----------------|

|                     | Group #2<br>(formula-fed) | Group #3<br>(breast + formula-fed) | p-Val <mark>u</mark> e          |
|---------------------|---------------------------|------------------------------------|---------------------------------|
| Participants (n)    | 12                        | 15                                 |                                 |
| Age (days)          | $1281 \pm 118$            | $1219 \pm 150$                     | 0.23                            |
| Fine motor          | $34.3 \pm 4.8$            | $32.9 \pm 6.4$                     | 0.52                            |
| Receptive language  | $34.5 \pm 5.6$            | 34.7 ± 5.8                         | 0.91                            |
| Expressive language | $37 \pm 5.8$              | $35.2 \pm 6.4$                     | 0.45                            |
| Visual reception    | $41.6 \pm 4.5$            | $38.8 \pm 6.1$                     | 0.18                            |
|                     |                           |                                    | 0.001<br>P Value<br>(Corrected) |
| K                   | R (A) (A)                 |                                    | 0.05                            |

#### Table 7

Comparison of behavioral test scores for breast-fed children divided into short and long feeding durations. Bold values indicate statistically different scores corrected for type 1 error using Holm–Bonferroni correction.

|                         | Short breast<br>feeding duration | Long breast<br>feeding duration | p-Value                         |
|-------------------------|----------------------------------|---------------------------------|---------------------------------|
| Participants (n)        | 22                               | 25                              |                                 |
| Age (days)              | $691 \pm 324$                    | 807 ± 341                       | 0.24                            |
| Breast feeding duration | $220 \pm 81$                     | 600 ± 124                       |                                 |
| Gross motor             | $20.41 \pm 4.7$                  | $23 \pm 5$                      | 0.046                           |
| Fine motor              | $20.4 \pm 5.5$                   | $25.3 \pm 8.6$                  | 0.028                           |
| Receptive language      | $19.2 \pm 8.9$                   | $26.7 \pm 11.2$                 | 0.015                           |
| Expressive language     | $16.9 \pm 7.9$                   | $25.6 \pm 10.7$                 | 0.0036                          |
| Visual reception        | 20.9 ± 9.2                       | $30 \pm 11.1$                   | 0.0042                          |
|                         |                                  | 1                               | Long < Short                    |
|                         |                                  | 1.                              | 0.001                           |
|                         |                                  |                                 | 0.001<br>P Value<br>(Corrected) |

### BREAST MILK IS THE BEST FOR NUTRITION OF PREMATURE INFANT

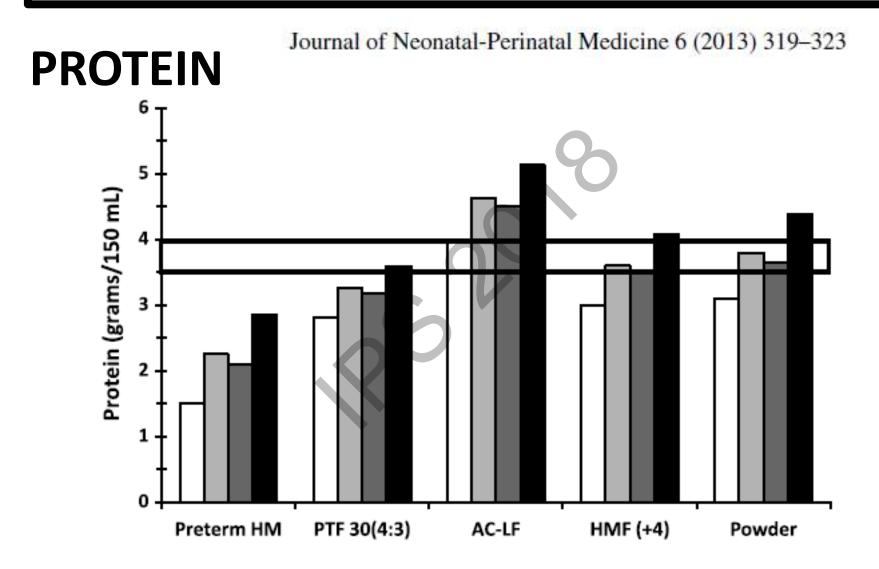
### **IS THERE A NEED FOR PHM FORTIFICATION ?**

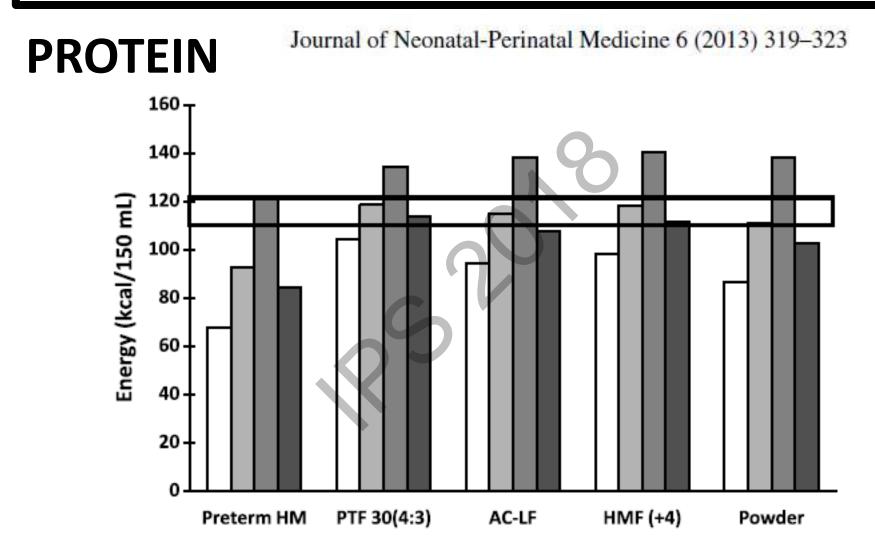
### FOR A BETTER GROWTH



# Nutrient Requirement of Premature & LBW FOR PROTEIN

- Protein (+ kcals) is the principal determinant of growth
- Aim is to support intrauterine rate of weight gain
- Digestion, absorption and metabolism limited by immaturity of organs
- ESPGHAN 2010 Recommendation of two different protein intakes
- Preterm babies <1000 g 3.6 4.1 g/100 kcal</li>
  - 4 -4.5 g/kg/day
- Preterm babies <u>1000-1800 g</u> 3.2 3.6 g/100 kcal
  - 3.5-4 g/kg/day


Table 1


#### Journal of Neonatal-Perinatal Medicine 6 (2013) 319-323

### PROTEIN

|                   |                | Ma                 | cronutrient analysis | results (mean $\pm$ SD) |                                                                                                                 |
|-------------------|----------------|--------------------|----------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|
| ŭ                 |                | Stage of lactation |                      | N O                     | р                                                                                                               |
|                   | 0–2 weeks      | 2–4 weeks          | $\geq$ 4 weeks       | Donor human milk (term) |                                                                                                                 |
| Protein<br>(g/dL) | $1.7 \pm 0.3$  | $1.5 \pm 0.2$      | 1.3±0.4              | 1.0±0.1                 | <0.02 (DHM vs. all stages)                                                                                      |
| (range)           | 1.3-2.8        | 1.2-2.0            | 0.9-1.9              | 0.8–1.1                 |                                                                                                                 |
| Fat               | $3.0 \pm 0.9$  | $3.6 \pm 1.1$      | $3.8 \pm 0.9$        | $2.5 \pm 0.3$           | ≤0.015                                                                                                          |
| (g/dL)            |                |                    |                      |                         | (DHM vs 0–2 wks and $\geq$ 4 wks)                                                                               |
| (range)           | 1.0-5.7        | 1.8-6.2            | 2.1-5.5              | 2.2-3.0                 |                                                                                                                 |
| Lactose           | $6.5 \pm 0.5$  | $6.6 \pm 0.3$      | $6.5 \pm 0.2$        | $6.1 \pm 0.4$           | < 0.005                                                                                                         |
| (g/dL)            |                |                    | •                    |                         | (DHM vs. all stages)                                                                                            |
| (range)           | 5.1-7.9        | 6.4-7.5            | 5.9-7.1              | 5.5-6.7                 | a contrational conservations and the state.                                                                     |
| Energy            | $17.2 \pm 2.4$ | $18.6 \pm 2.9$     | $18.9 \pm 2.6$       | $14.6 \pm 1.4$          | 0.021                                                                                                           |
| (kcal/oz)         |                |                    |                      |                         | (DHM vs $0-2$ wks and $>4$ wks)                                                                                 |
| (range)           | 12.4-24.5      | 13.6-25.7          | 14.2-23.6            | 13.1-16.6               | n Meneralae en la sur de la sur la |

DHM: donor human milk.





#### Figure 3. Forest plot of comparison: I Fortified breast milk versus unfortified breast milk, outcome: I.I Weight gain (g/kg/d).

|                                        | For        | tified             | 1       | Unf  | ortifie | d   |        | MeanDifference     |      | MeanDifference      |
|----------------------------------------|------------|--------------------|---------|------|---------|-----|--------|--------------------|------|---------------------|
| Study or Subgroup                      | Mean       | SD                 | Total   |      |         |     | Weight | IV, Fixed, 95% CI  | Year | IV, Fixed, 95% Cl   |
| 1.1.1 All trials                       |            |                    |         |      |         |     |        |                    |      |                     |
| Modanlou 1986                          | 26.7       | 3.4                | 8       | 19.4 | 2.7     | 10  | 4.0%   | 7.30 [4.41, 10.19] | 1986 |                     |
| Gross 1987 (1)                         | 19.9       | 2.5                | 10      | 17.7 | 4.4     | 10  | 3.4%   | 2.20 [-0.94, 5.34] |      |                     |
| Gross 1987 (2)                         | 21.5       | 3.5                | 17      | 17.5 | 3.3     | . 9 | 4.6%   | 4.00 [1.28, 6.72]  |      |                     |
| Polberger 1989                         | 20.4       | 2.8                | 7       | 15.3 | 3.2     | 7   | 3.4%   | 5.10 [1.95, 8.25]  |      |                     |
| Pettifor 1989                          | 16.7       | 5                  | 29      | 16.8 | 6.4     | 28  | 3.8%   |                    | 1989 |                     |
| Porcelli 1992                          | 11.4       | 2.7                | 10      | 12   | 3       | 10  | 5.4%   |                    | 1992 |                     |
| Lucas 1996                             | 15.6       | 4.7                | 137     | 15   | 3.5     | 138 | 35.2%  | 0.60 [-0.38, 1.58] |      | - <b>-</b>          |
| Wauben 1998                            | 16.6       | 1.6                | 12      | 14.2 | 2       | 13  | 16.9%  | 2.40 [0.99, 3.81]  |      | <b>_</b>            |
| Nichall 1999                           | 15.1       | 3.3                | 13      | 13.2 | 6.4     | 10  | 1.8%   | 1.90 [-2.45, 6.25] |      |                     |
| Mukhopadhyay 2007                      | 15.1       | 4                  | 82      | 12.9 | 4       | 75  | 21.5%  | 2.20 [0.95, 3.45]  |      | <b></b>             |
| Subtotal (95% CI)                      |            |                    | 325     |      |         | 310 | 100.0% | 1.81 [1.23, 2.40]  |      | •                   |
| Heterogeneity: Chi <sup>2</sup> = 3    |            |                    |         |      | = 72%   |     |        |                    |      |                     |
| Test for overall effect: 2             | Z = 6.12 ( | (P < 0             | 0.00001 | 1)   |         |     |        |                    |      |                     |
|                                        |            |                    |         |      |         |     |        |                    |      |                     |
| 1.1.2 Trials recruiting                |            |                    | term    |      |         |     |        |                    |      |                     |
| Modaniou 1986                          | 25.7       |                    |         |      |         |     |        |                    |      |                     |
| Pettifor 1989                          | 16.7       | 5                  |         |      |         |     |        |                    |      |                     |
| Polberger 1989                         | 20.4       |                    |         |      |         |     |        |                    |      |                     |
| Nichall 1999                           | 15.1       |                    |         |      |         |     |        |                    |      |                     |
| Mukhopadhyay 2007<br>Subtotal (95% Cl) | 15.1       | 4                  |         |      |         |     |        |                    |      |                     |
| Heterogeneity: Chi <sup>2</sup> = 1    | 16.02, df  | = 4 (1             | P =     |      | -       |     |        |                    |      |                     |
| Test for overall effect: 2             | Z = 5.58 ( | (P < 0             | 0.00    |      |         |     |        |                    |      |                     |
|                                        |            |                    |         |      |         |     |        | ECT                |      |                     |
| 1.1.3 Trials conducted                 | d in low-  | or m               | idd     |      |         |     |        |                    |      |                     |
| Pettifor 1989                          | 16.7       | 5                  |         |      |         |     |        |                    |      |                     |
| Mukhopadhyay 2007                      | 15.1       | 4                  |         |      |         |     |        |                    |      |                     |
| Subtotal (95% CI)                      |            |                    | 1       |      |         |     |        |                    |      |                     |
| Heterogeneity: Chi <sup>z</sup> = 1    | 1.94, df = | 1 (P               | = 0     |      |         |     |        | інт (              |      |                     |
| Test for overall effect: 2             | Z = 3.15 ( | (P = 0             | 0.00    |      |         |     |        |                    |      |                     |
|                                        |            |                    |         |      |         |     |        |                    |      |                     |
|                                        |            |                    |         |      |         |     |        |                    |      |                     |
|                                        |            |                    |         |      |         |     |        |                    |      | I Favours fortified |
| Test for subaroup diffe                | erences:   | Chi <sup>z</sup> : | = 3     |      |         |     |        |                    |      | ravbursionied       |
|                                        |            |                    |         |      |         |     |        |                    |      |                     |
|                                        |            |                    |         |      |         |     |        |                    |      |                     |
|                                        |            |                    |         |      |         |     |        |                    |      |                     |
|                                        |            |                    |         |      |         |     |        |                    |      |                     |
|                                        |            |                    |         |      |         |     |        |                    |      |                     |
|                                        |            |                    |         |      |         |     |        |                    |      |                     |
|                                        |            |                    |         |      |         |     |        |                    |      | Libi                |
|                                        |            |                    |         |      |         |     |        |                    |      |                     |

#### Multi-nutrient fortification of human milk for preterm infants

#### Figure 4. Forest plot of comparison: I Fortified breast milk versus unfortified breast milk, outcome: 1.2 Length gain (cm/wk).

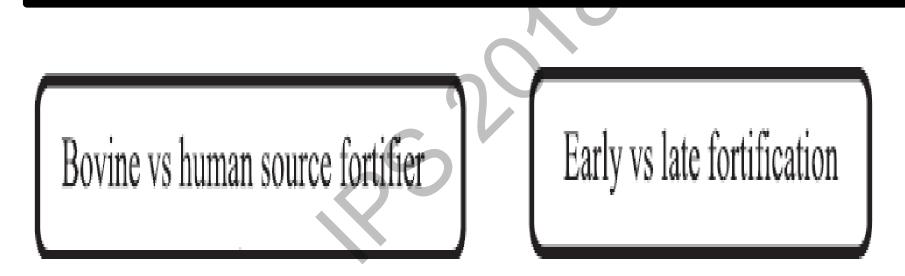
|                                               | Fo         | rtified |                  | Unf              | ortifie | d         |                         | Mean Difference                        |             | Mean Difference   |
|-----------------------------------------------|------------|---------|------------------|------------------|---------|-----------|-------------------------|----------------------------------------|-------------|-------------------|
| Study or Subgroup                             | Mean       | SD      | Total            | Mean             | SD      | Total     | Weight                  | IV, Fixed, 95% Cl                      | Year        | IV, Fixed, 95% Cl |
| 1.2.1 All trials                              |            |         |                  |                  |         |           |                         |                                        |             |                   |
| Modaniou 1986                                 | 0.99       | D.4     | В                | D.81             | 0.44    | 10        | 1.6%                    | 0.18 [-0.21, 0.57]                     | 1986        |                   |
| Gross 1987 (1)                                | 0.89       | 0.19    | 10               | D.81             | 0.22    | 10        | 7.3%                    | 0.08 [-0.10, 0.26]                     | 1987        |                   |
| Gross 1987 (2)                                | 0.84       | 0.25    | 17               | D.79             | 0.12    | 9         | 11.8%                   | 0.05 [-0.09, 0.19]                     | 1987        |                   |
| Polberger 1989                                | 1.2        | 0.17    | 7                | D.83             | 0.17    | 7         | 7.5%                    | 0.37 [0.19, 0.55]                      | 1989        |                   |
| Porcelli 1992                                 | 0.6        | D.2     | 10               | 0.7              | 0.3     | 10        | 4.8%                    | -0.10 [-0.32, 0.12]                    | 1992 —      |                   |
| Lucas1996                                     | 0.93       | 0.47    | 137              | D.96             | 0.47    | 138       | 19.3%                   | -0.03 [-0.14, 0.08]                    | 1996        |                   |
| Wauben 1998                                   | 1.1        | D.2     | 12               | 0.9              | 0.2     | 13        | 9.7%                    | 0.20 [0.04, 0.36]                      |             |                   |
| Mukhopadhyay 2007<br><b>Subtotal (95% Cl)</b> | 1.04       | D.3     | 82<br><b>283</b> | D.86             | 0.2     | 75<br>272 | 38.0%<br><b>100.0</b> % | 0.18 [0.10, 0.26]<br>0.12 [0.07, 0.17] | 2007        | <br>◆             |
| Heterogeneity: Chi² = 2                       | 22.71, df  | = 7 (P  | = 0.002          | 2); l <b>=</b> 6 | 9%      |           |                         |                                        |             |                   |
| Test for overall effect: Z                    | Z = 4.80 ( | (P ≤ 0. | 00001)           |                  |         |           |                         |                                        |             |                   |
|                                               |            |         |                  |                  |         |           |                         |                                        |             |                   |
| 1.2.2 Trials recruiting                       |            | y prete | er 👘             |                  |         |           |                         |                                        |             |                   |
| Modaniou 1986                                 | 0.99       | D.4     | 7                |                  |         |           |                         |                                        |             |                   |
| Polberger 1989                                | 1.2        | 0.17    |                  |                  |         |           |                         |                                        |             |                   |
| Mukhopadhyay 2007<br>Subtotal (95% Cl)        | 1.04       | D.3     |                  |                  |         |           |                         |                                        |             |                   |
| Heterogeneity: Chi² = 3                       | 3.67, df=  | 2 (P :  |                  |                  |         |           |                         |                                        |             |                   |
| Test for overall effect: 2                    | Z = 5.80 ( | (P < 0  |                  |                  |         |           |                         |                                        |             |                   |
|                                               |            |         |                  |                  |         |           |                         | ECT (                                  |             |                   |
| 1.2.3 Trials conducted                        | l in low-  | or mi   |                  |                  |         |           |                         |                                        |             |                   |
| Mukhopadhyay 2007<br>Subtotal (95% Cl)        | 1.04       | D.3     |                  |                  |         |           |                         |                                        |             |                   |
| Heterogeneity: Not app                        | olicable   |         |                  |                  |         |           |                         | TII 🖊                                  |             |                   |
| Test for overall effect: 2                    | Z = 4.46 ( | (P < 0  |                  |                  |         |           |                         |                                        | <b>iAIN</b> |                   |
|                                               |            |         |                  |                  |         |           |                         |                                        |             |                   |
|                                               |            |         |                  |                  |         |           |                         |                                        |             | 0 0.25 0.5        |
|                                               |            |         |                  |                  |         |           |                         |                                        |             | Favours fortified |
| Test for subaroup diffe                       | erences:   | Chi² =  |                  |                  |         |           |                         |                                        |             |                   |
|                                               |            |         |                  |                  |         |           |                         |                                        |             |                   |
|                                               |            |         |                  |                  |         |           |                         |                                        |             |                   |
|                                               |            |         |                  |                  |         |           |                         |                                        |             | Cochr             |
|                                               |            |         |                  |                  |         |           |                         |                                        |             |                   |
|                                               |            |         |                  |                  |         |           |                         |                                        |             |                   |
|                                               |            |         |                  |                  |         |           |                         |                                        |             | Librar            |

#### Multi-nutrient fortification of human milk for preterm infants

#### Figure 5. Forest plot of comparison: | Fortified breast milk versus unfortified breast milk, outcome: 1.3 Head growth (cm/wk).

|                                     | Fo         | Fortified            |        | Unfortified          |            |       | Mean Difference |                    | Mean Difference |                |               |        |
|-------------------------------------|------------|----------------------|--------|----------------------|------------|-------|-----------------|--------------------|-----------------|----------------|---------------|--------|
| Study or Subgroup                   | Mean       | SD                   | Total  | Mean                 | SD         | Total | Weight          | IV, Fixed, 95% Cl  | Year            | IV, Fixed, 95% | CI            |        |
| 1.3.1 All trials                    |            |                      |        |                      |            |       |                 |                    |                 |                |               |        |
| Modaniou 1986                       | 1.09       | 0.07                 | 8      | 0.82                 | 0.24       | 10    | 6.2%            | 0.27 [0.11, 0.43]  | 1986            |                |               |        |
| Gross 1987 (1)                      | 0.92       | 0.09                 | 10     | 0.83                 | 0.16       | 10    | 11.7%           | 0.09 [-0.02, 0.20] | 1987            | +              |               |        |
| Gross 1987 (2)                      | 0.84       | 0.21                 | 17     | 0.84                 | 0.09       | 9     | 11.3%           | 0.00 [-0.12, 0.12] | 1987            |                | -             |        |
| Polberger 1989                      | 1.11       | 0.13                 | 7      | 0.94                 | 0.25       | 7     | 3.5%            | 0.17 [-0.04, 0.38] | 1989            |                |               |        |
| Porcelli 1992                       | 0.7        | 0.3                  | 10     | 0.7                  | D.2        | 10    | 3.0%            | 0.00 [-0.22, 0.22] | 1992 —          |                |               |        |
| Lutas 1996                          | 1.01       | 0.47                 | 137    | 0.95                 | 0.35       | 138   | 15.7%           | 0.06 [-0.04, 0.16] | 1996            |                |               |        |
| Wauben 1998                         | 1          | 0.1                  | 12     | 0.9                  | D.2        | 13    | 10.1%           | 0.10 [-0.02, 0.22] | 1998            | +              |               |        |
| Mukhopadhyay 2007                   | 0.83       | 0.2                  | 82     | 0.75                 | D.2        | 75    | 38.6%           | 0.08 [0.02, 0.14]  | 2007            |                |               |        |
| Subtotal (95% CI)                   |            |                      | 283    |                      |            | 272   | 100.0%          | 0.08 [0.04, 0.12]  |                 |                | •             |        |
| Heterogeneity: Chi² = {             | 8.96, df=  | 7 (P=                | 0.26); | l <sup>2</sup> = 229 | 6          |       |                 |                    |                 |                |               |        |
| Test for overall effect: J          |            |                      |        |                      |            |       |                 |                    |                 |                |               |        |
|                                     |            |                      |        |                      |            |       |                 |                    |                 |                |               |        |
| 1.3.2 Trials recruiting             | only ver   | y pre <mark>t</mark> |        |                      |            |       |                 |                    |                 |                |               |        |
| Modaniou 1986                       | 1.09       | 0.0                  |        |                      |            |       |                 |                    |                 |                |               |        |
| Polberger 1989                      | 1.11       | 0.                   |        |                      |            |       |                 |                    |                 |                |               |        |
| Mukhopadhyay 2007                   | 0.83       | 0                    |        |                      |            |       |                 |                    |                 |                | <u> </u>      |        |
| Subtotal (95% CI)                   |            |                      |        |                      |            |       |                 |                    |                 |                | ▶             |        |
| Heterogeneity: Chi <sup>2</sup> = 9 | 5.22. df = | :2(                  |        |                      |            |       |                 |                    |                 |                |               |        |
| Test for overall effect: 2          |            |                      |        |                      |            |       |                 |                    |                 |                |               |        |
|                                     |            |                      |        |                      |            | P     |                 | ECT (              |                 |                |               |        |
| 1.3.3 Trials conducted              | d in low-  | or                   |        |                      |            |       |                 |                    |                 |                |               |        |
| Mukhopadhyay 2007                   | 0.83       | ſ                    |        |                      |            |       |                 |                    |                 |                | <b>–</b>      |        |
| Subtotal (95% CI)                   | 0.00       |                      |        |                      |            |       |                 |                    |                 |                |               |        |
| Heterogeneity: Not ap               | nlicoblo   |                      |        |                      |            |       |                 |                    |                 |                |               |        |
| Test for overall effect: 2          | •          | /P -                 |        |                      | - / 🗠      |       |                 | <b>7K()</b>        | WTH             |                |               |        |
| restion overall ellect.             | 2 - 2.30   | γ -                  |        |                      | <b>_</b> / |       |                 |                    |                 |                |               |        |
|                                     |            |                      |        |                      |            |       |                 |                    |                 |                |               |        |
|                                     |            |                      |        |                      |            |       |                 |                    |                 | 0 0.           |               |        |
| Tast for subgroup diffs             |            | Chi                  |        |                      |            |       |                 |                    |                 | ol Favo        | urs forlified |        |
| Test for subaroup diffe             | erences:   | vn                   |        |                      |            |       |                 |                    |                 |                |               |        |
|                                     |            |                      |        |                      |            |       |                 |                    |                 |                |               | _      |
|                                     |            |                      |        |                      |            |       |                 |                    |                 |                |               | chra   |
|                                     |            |                      |        |                      |            |       |                 |                    |                 |                |               | LIII d |
|                                     |            |                      |        |                      |            |       |                 |                    |                 |                | 1 📕 🖬 📲       |        |
|                                     |            |                      |        |                      |            |       |                 |                    |                 |                |               | orarv  |

#### Multi-nutrient fortification of human milk for preterm infants


# **NO EFFECTS ON**

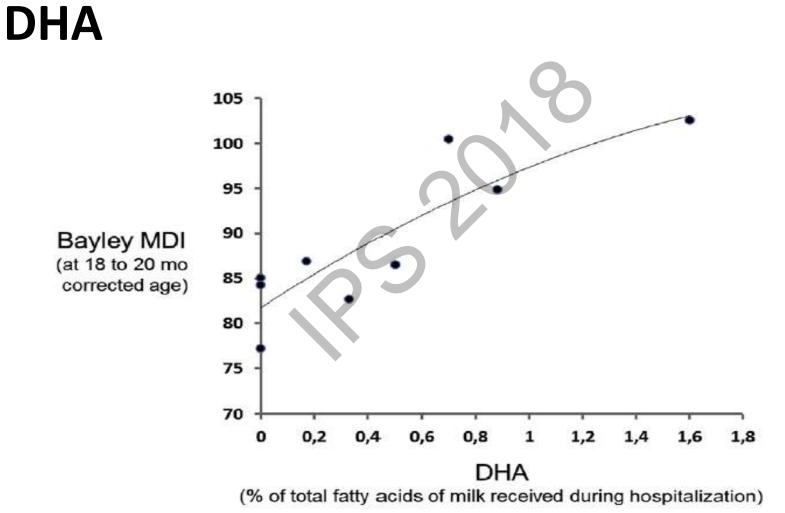


### The Use of Multinutrient Human Milk Fortifiers in Preterm Infants




**A Systematic Review of Unanswered Questions** 




Clin Perinatol 44 (2017) 173-178

## Wide Variation in Human Milk DHA Due to Diet



Yuhas R, et al. *Lipids.* 2006;41:851-858. \*Brenna JT et al. *Am J Clin Nutr.* 2007;85:1457-1464.

#### Clin Perinatol 44 (2017) 85-93



Clin Perinatol 44 (2017) 85-93

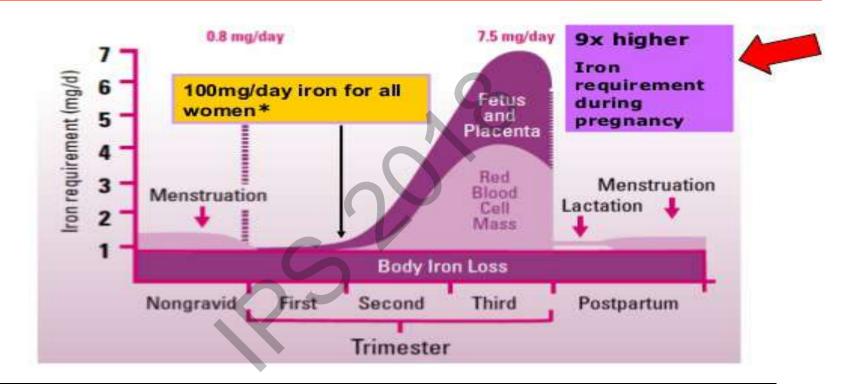
#### Table 1

DHA

Providing preterm infants with milk with a higher docosahexaenoic acid dose (about 1% of fatty acids, compared with 0.3%) improved early visual function and reduced markedly abnormal developmental outcomes at age 18 months

|                                                                                       | High DHA (≈1%) | Standard DHA (≈0.3%) | Significance    |  |  |  |
|---------------------------------------------------------------------------------------|----------------|----------------------|-----------------|--|--|--|
| Visual acuity (cycles per degree), aged 4 mo (corrected for gestational age)          |                |                      |                 |  |  |  |
|                                                                                       | 9.6 (3.7)      | 8.2 (1.8)            | <i>P</i> = .025 |  |  |  |
| Mental development index (MDI), aged 18 mo (corrected for gestational age)            |                |                      |                 |  |  |  |
| Girls                                                                                 | 99.1(13.9)     | 94.4 (17.5)          | <i>P</i> =.03   |  |  |  |
| Boys                                                                                  | 91.3 (14.0)    | 91.9 (17.2)          | n.s.            |  |  |  |
| Markedly abnormal development index (MDI), aged 18 mo (corrected for gestational age) |                |                      |                 |  |  |  |
| MDI <70                                                                               | 17 (5%)        | 35 (11%)             | <i>P</i> = .03  |  |  |  |
| MDI <85                                                                               | 64 (20%)       | 90 (27%)             | <i>P</i> = .08  |  |  |  |



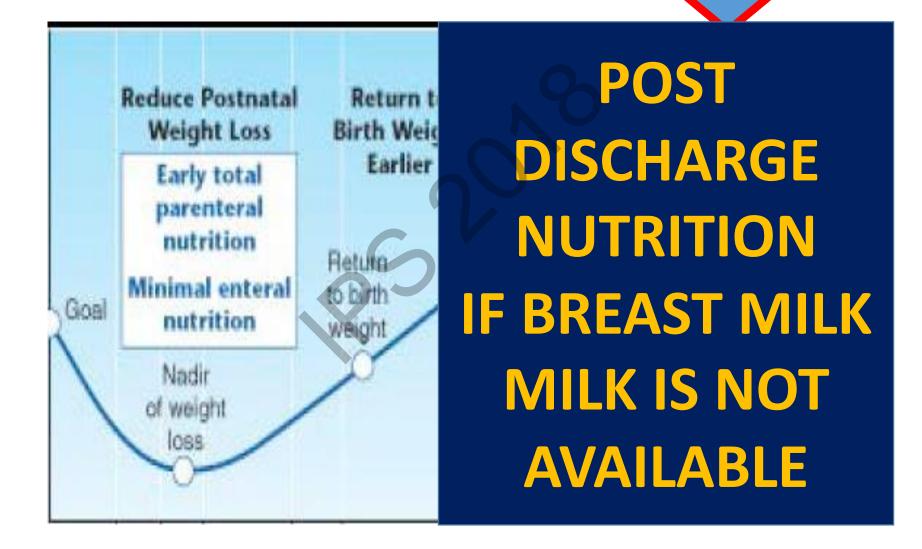

# RISK OF OSTEOPENIA

#### Semin Perinatol 31:89-95 © 2007

Table 1 Macronutrient Concentrations (per dL) of Feedings for Preterm Infants at the Time of Discharge

|              | Human Milk<br>(mature)* | TERM FORM | /IULA EN | RICHED POST DISC | CH FORMULA |
|--------------|-------------------------|-----------|----------|------------------|------------|
| Calories/dL  | 69                      | 68        | 68       | 75               | 74         |
| Protein g/dL | 1.0                     | 1.4       | 1.4      | 2.1              | 2.1        |
| Fat g/dL     | 3.9                     | 3.6       | 3.6      | 4.1              | 3.9        |
| CHO g/dL     | 6.6                     | 7.3       | 7.3      | 7.7              | 7.9        |
| Vit A IU/dL  | 390                     | 203       | 203      | 343              | 333        |
| Vit D IU/dL  | 2                       | 40        | 40       | 52               | 59         |
| Vit E IU/dL  | 1.0                     | 2.0       | 1.3      | 2.7              | 3.0        |
| Ca mg/dL     | 25                      | 53        | 53       | 78               | 89         |
| P mg/dL      | 13                      | 28        | 36       | 46               | 49         |
| Fe mg/dL     | 0.1                     | 1.22      | 1.22     | 1.34             | 1.33       |

#### If a baby was born prematurely they may not have had enough time to get iron from their mother during the last few weeks of pregnancy



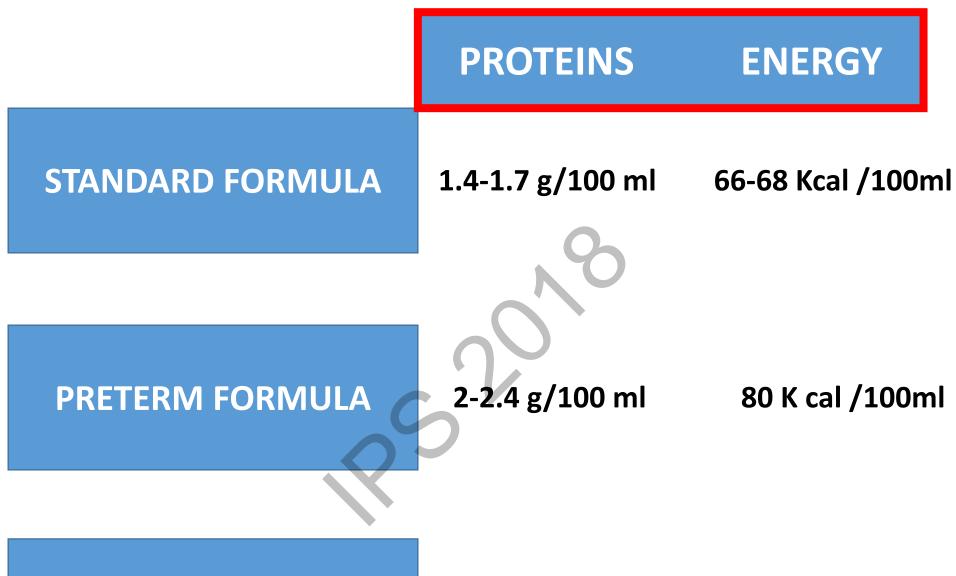

### IRON SHOULD BE SUPPLEMENTED WHEN PREMATURE ARE FED BREAST MILK

### TO ENSURE AN APPROPRIATE GROWTH IN THE SECOND PHASE

### THE USE OF BREAST MILK FORTIFIED BY PROTEINS AND DHA AND VIT D IS RECOMMENDED along with IRON SUPPLEMENTATION

### **3<sup>RD</sup> PHASE THE CATCH UP GROWTH**



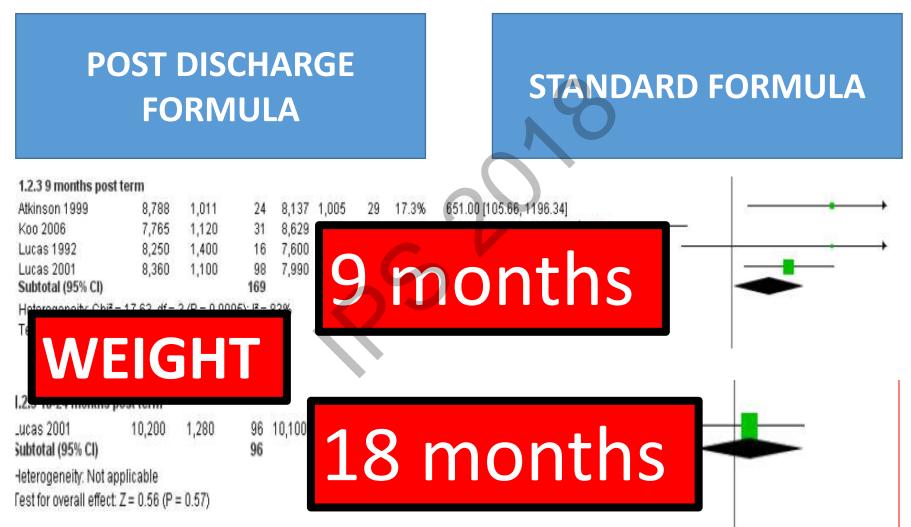

### ENTERAL NUTRITION OF THE PRETERM THE DEBATE!

# FORMULA ENRICHED OR NOT ?

### **STANDARD FORMULA**

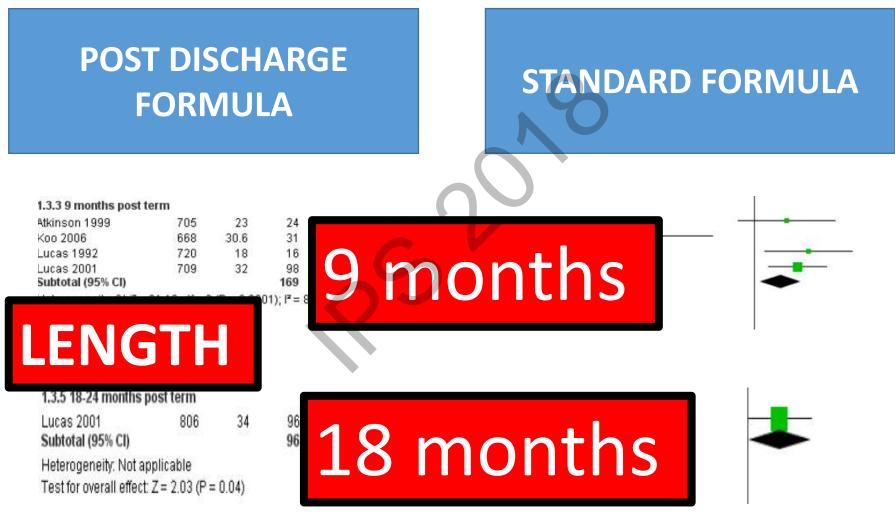
#### **PRETERM FORMULA**

POST DISCHARGE FORMULA



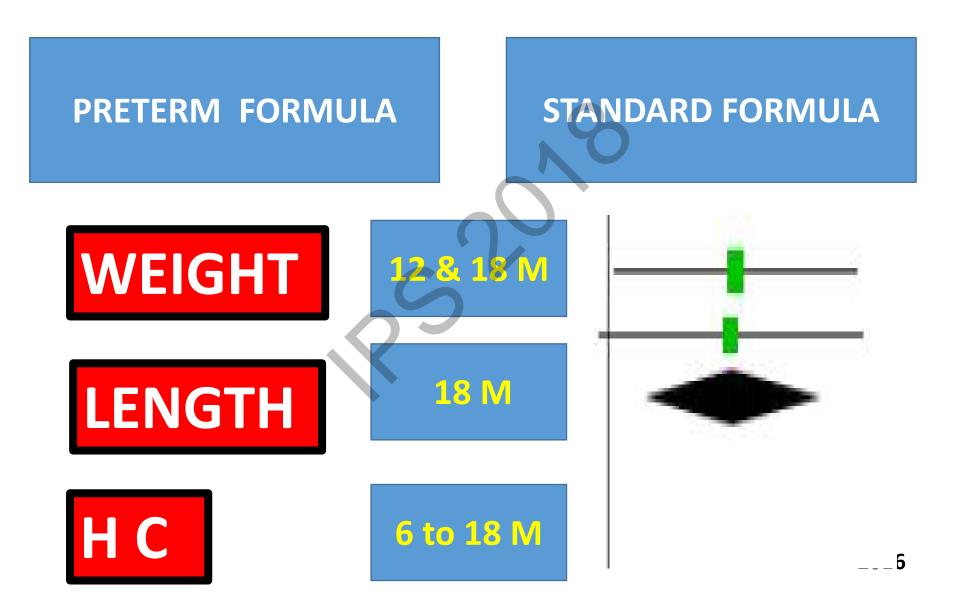

POST DISCHARGE FORMULA

1.7-1.9 g/100 ml 74 K cal /100ml


Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge (Review)





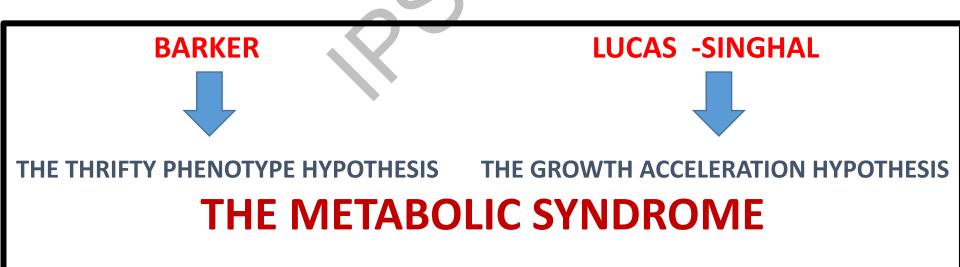

Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge (Review)



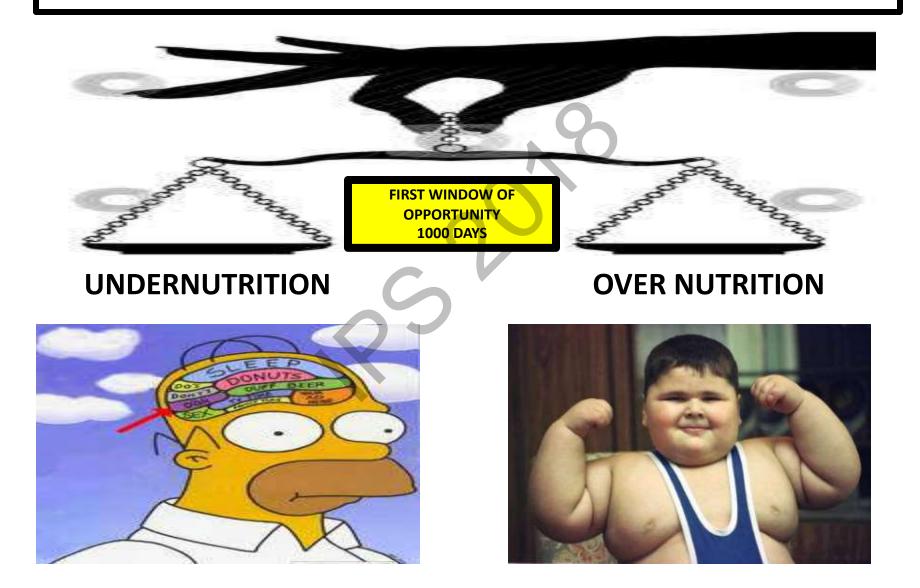


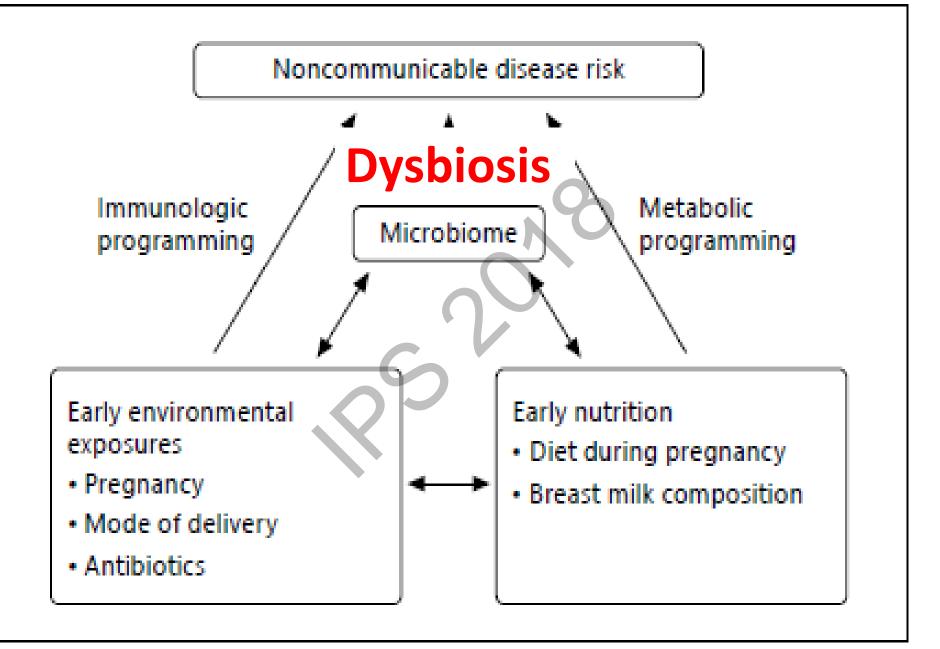
Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge (Review)






#### CONCERNS ABOUT RAPID GROWTH AND CATCH UP





### **TWO SCENARIOS**

## PREGNANCY NEONATAL & POST



### **NUTRITION & DEVELOPMENT**



